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FOREWORD

This final report presents the results of work performed by

personnel of the Flight Technology Group of Lockheed's Huntsville

Engineering Center for NASA MSFC under Contract NAS8-33807. The NASA

Contracting Officer's Representative and technical monitor for this

contract was Mr. Charlie C. Dill, Jr., to whom the authors are grateful

for his valuable assistance, direction, and contributions to the

successful completion of this study.
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I. INTRODUCTION

Research was conducted to determine the feasibility of replacinE the

Solid Rocket Boosters on the existing Space Shuttle Launch Vehicle (SSLV) with

Liquid Rocket Boosters (LRB). As a part of the LRB selection process, a

series of wind tunnel tests was conducted along with aero studies to determine

the effects of different LRB confiEurations on the SSLV. Final results were

tabulated into increments and added to the existinE SSLV data base.

The research conducted in this study was taken from a series of wind

tunnel tests conducted at Marshall Space Flight Center's 14-inch Trisonic Wind

Tunnel. The effects on CAF, CNF, CMF, CY, CSR, CTR, CBR were investiEated for

a number of candidate LRB confiEurations. The aero effects due to LRB

protuberances, ET/LRB sep. distance, and aft skirts were also Eathered from

the tests. Analysis was also conducted to investiEate the base pressure and

plume effects due to the new booster Eeometries

Section 2 of this study discusses the test results found in Phase I of

w{nd tunnel testlnE. Section 3 discusses the results in Phase II of test-

i.ng, alonK with a comparison to Phase I tests. Section 4 Elves preliminary

LRB lateral/directional data results and trends. Section 5 discusses the

protuberance effects and section 6 the gap/skirt effects. Section 7 discusses

and Elves results of the base pressure/plume effects study.
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2. PHASE I LIQUID ROCKET BOOSTER (LRB) TEST DATA

This section delineates the methods and results of the Phase I (TWT0707)

wind tunnel test. Section 2.1 presents the test configurations and conditions

used during testing, and the methodology of determining the incremental data

is discussed in Section 2.2. Section 2.3 presents the interpolations

performed on the LRB data.

2.1 TEST CONFIGURATIONS AND CONDITIONS

Testing was conducted to determine the effects of length and diameter on

aerodynamic coefficients. The configurations tested used diameters of 12.2

ft, 15 ft, 18 ft, and 21 ft. Three lengths were tested for each diameter

configuration ranging from 144 ft to 190 ft. Figure 2-1 and Table 2-1 pre-

sent the test configurations used in Phase I wind tunnel testing. Table 2-2

shows the test matrix for Phase I. The lengths were measured from nose tip to

base, excluding the nozzle. The LRB/ET attach points were the same for all

I.RB configurations, and the base of the nose cones was not to extend aft of

this point. The nose tip had a radius of I.Ii ft, and nose half angles were

all 18 degrees. All LRB's were tested - without protuberances.

The angle of attack for the tests ranged from -I0 degrees to +I0 degrees

in even increments. The Mach numbers used were 0.6, 0.8, 0.9, 0.95, 1.05,

1.15, 1.25 1.48, 1.96, 2.74, 3.48, and 4.96. The sideslip angle was zero.

Nominal settings of I0 degrees/5 degrees were used for the inboard/outboard

elevon settings.

2
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PHASE I LRB CONFIGURATIONS

I
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I
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I
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I

L1

L2

L3

L4

Represents Current SSLV

D1 D2

12.2 15

144 149

150 159

170 172

190 190

Configuration
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2.2 INCREMENT DEVELOPMENT METHODOLOGY

The development of the coefficient incremental data was initiated by the

analysis of Phase I data obtained from wind tunnel testing. The data were

compared to the current SSLV data and evaluated for validity. The increments

were developed from the difference between a particular set of LRB data and

that of the DILl configuration, the latter being equivalent to the current SRB

less the aft skirtand protuberances. The resulting increments could then be

added directly to the SSLY data base. Increments were developed for each LRB

configuration and test point.

For the LRB Phase I effort, the test Mach numbers are shown in Table 2-2.

Incremental data at Mach numbers corresponding to 0.95, 1.05, 1.15, and 3.48

were generated for the "D2", :'DY', and "D4" configurations by subtracting

experimental baseline (DILl) data from data generated by linear interpolation

using the method outlined in Fig. 2-2.

Analysis of the incremental data at the above transonic Mach numbers has

shown that valid increments cannot be generated using this method. However,

at higher Mach numbers where changes in the coefficient data with changes in

Mach number are small, this method can be used with relatively good results.

Shown in Fig. 2-3 is a flowchart detailing the approach recommended for

any future incremental data base development efforts. The new method differs

from the old method only in that the interpolation for desired Mach numbers is

not performed until after incremental data are generated. This new method-

ology for obtaining incremental data at desired Mach numbers (between Mach

numbers for which experimental data are available) will assure that consistent

increments will be generated.

Shown in Fig. 2-4 are several example plots which illustrate the differ

ences between Phase I incremental data obtained using the previous interpo-

].ation method and the recommended future method. Figures 2-4 verifies
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that the previous increment development method used to generate the Phase I

data is not responsible for the large differences that exist between the Phase

I and the Phase II incremental data at transonic Mach numbers.

2.3 VERIFICATION OF INTERPOLATIONS PERFORMED ON LRB DATA

Once raw data were available and an incremental development chosen, the

results were interpolated versus alpha and Math and compared to existing SSLV

data. Section 2.3.1 gives results for angle of attack interpolations, and

section 2.3.2 gives results for Math number interpolations.

2.3.1 AnKle of Attack Interpolation

Phase I results were interpolated to even angles of attack ranging from

-8 degrees to +8 degrees in 2 degree increments from the raw wind tunnel

data. Attached are the plots of various coefficients as a function of attack

(Figs. 2-5 to 2-10). As the plots show, the interpolated data overlay the raw

data extremely well for relatively linear curves (CMF and CNF). For non-

]inear curves (CAF), there are some slight differences in the curves

representing raw and interpolated data.

These differences are due to using a linear interpolation on a nonlinear

curve and not to faulty interpolation. In all cases, the differences are

qu{te small and are well within the accuracy range of the experimental data.

In future efforts, higher order interpolation methods will be used in

interpolating non-linear and/or critical data.

2.3.2 Mach Number Interpolation

The raw data from the wind tunnel testing were interpolated for Mach

numbers within the LRB Phase I data base. Table 2-3 presents the LRB Phase I

configurations represented in the data. The attached Math numbers plots

(Figs. 2-11 through 2-12) detail the data that were linearly interpolated from

the raw data. The circled data points shown in the plots lie in a straight

12
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Table 2-3 PHASE I LRB DIMENSIONS

ft )

L1

L2

L3

L4

D1
i

12.2"

144

150

170

190

D2

15

149

159

172

190

D3
i v,

18

154

163

175

190

D4

21

158

167

177

Current SSLV configuration.
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line between the actual data points. From the plots it is evident that the

data base generated was compatible with the existing operational Shuttle

aerodynamic data.

2.4 EVALUATION OF PLUME EFFECTS

An analysis was conducted to investigate plume effects on Shuttle LRB

configuration aerodynamic characteristics. The analysis included prediction

of the correlation between base pressure and various parameters such as the

number of nozzles, thrust, area ratio, chamber pressure and base geometry.

The plume effects were evaluated with regard to axial force, normal force and

pitching moment.

The method used to predict the correlation between base pressure and the

parameters was determined by a review of the Compendium of FliKht Vehicle and

Base Pressure Techniques (Lockheed Missiles & Space Co., Inc. August 1983).

From this review, the base pressure technique used was developed. This

technique is outlined as follows:

Define configuration, dimensions, etc.

Define trajectory and thrust history

Calculate thrust coefficient and thrust loading using base area

Determine generic base pressure

Determine correction for nozzle axial extension

Determine correction for flare

Determine correction for multiple nozzle plume effects

Calculate base pressure coefficient.

The base pressure technique was then applied to each LRB configuration to

determine the base pressure coefficients. The resulting coefficients were

compared to actual flight data for validation. The coefficients were then

used to determine how a change in base configuration would affect aerodynamic

characteristics and to predict base drag numbers and how base drag would

affect vehicle performance. Section 7 discusses the effects of the base drag

further.
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The effect of a change in base configuration was analyzed with regard to

normal force and pitching moment coefficient. The correlation between base

pressure on the external tank base and pressure distribution on the oribiter's

tower wing and fuselage was investigated. The investigation was based on pre-

vious analysis of solid and gaseous plume simulation test data. Figs. 2-13

through 2-18 present graphic representations of the analysis.

From the evaluation of the wind tunnel data the following relationships

were derived for the LRB study:

gCN = 0.28 gCpB

_C M = -0.27 gCpBET

where gC N, gCM are increments relative to the current Shuttle. gCpBETiS the

ET base pressure coefficient increment of the LRB configuration relative to the

current Shuttle.
gCM .
__ is the value consistent with plume effects acting in the
gC

N

aft region of the vehicle. It was concluded that the mated vehicle normal

force and pitching moment effects can be predicted if the ET base pressure

effects can be predicted.

The LRB plume effects study utilized five different booster configura-

tions. These configuration are presented in Fig. 2-19. The lack of a definite

configurations necessitated the estimation of certain parameters. These

uncertainties are outlined in Table 2-4.
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Table 2-4 ANALYTICAL UNCERTAINTIES

PARAMETER

SKIRT DIMENSION

NOZZLE AXIAL POSITION

SKIRT FLARE EFFECTS

ENGINE THRUST

ENGINE CHAMBER PRESSURE

NOZZLE AREA RATIO

PLUME ANGLE VS ALTITUDE

MULTIPLE ENGINE PLUME EFFECTS

BASE PRESSURE ABOVE M = 2.0

ENGINE SPACING

ALTITUDE AND DiN PRESSURE VS MACH NO.

THRUST VS MACH NO.

CONFIGURATION

2 LRB 3 LRB 4 LRB 5 LRB

E E E E

E E E E

EX EX EX

E

E

E E

E E

EX

EX

E E E E

(I) (I) (I) (t)

(2) (2) (2) (2)

I

I
I

I
I
I

I

I

I

E = ESTIMATED VALUE BASED ON MEASUREMENTS/CALCULATIONS

Ex : EXTRAPOLATION BEYOND EXISTING DATA BASE WAS PERFORMED.

(I) : ASSUMED SAME AS CURRENT SHUTTLE PROFILE

(2) = ASSUMED CONSTANT THRUST
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The base pressure prediction technique was used to determine the base

pressure coefficient for each booster configuration. Figures 2-20 and 2-21

present the Booster base pressure coefficients and external tank base pressure

coefficients for each configuration at the Mach numbers used in the analysis.

The base drag increment for the mated vehicle was determined and compared to

current Shuttle data. Figure 2-22 presents the base drag increments for the

booster configurations in comparison to the current STS. It was determined

that the drag for the LRB is greater than that of the current shuttle because

of the larger base area and the base pressure.

The normal force and pitching moment effects were calculated and compared

to the current STS. Figs. 2-23 and 2-24 graphically present the comparison.

Results showed that, for the LRB's, at M > I, the pitching moment was sig-

nificantly increased while normal force was significantly decreased. This was

attributed to the decrease in ET base pressure due to a larger base area in

the cecirculation base from environment. Furthermore, the greater nozzle area

ratios of the LRB configurations resulted in lower plume expansion angles and

decreased basepressure.

The study recommended that delta base values not be incremented to account

for plume effects for the following reasons:

I. Configuration uncertainties and assumptions are a significant factor

2. Drag increment is not large compared to total vehicle drag and thrust

3. Normal force increment is not larger compared to total vehicle values

4. Pitching moment has the most significant impact and could bean

important factor.

It is recommended that an update to the plume analysis be conducted when more

definition becomes available on LRB designs. This updated analysis was

conducted and is discussed in section 7.

32

LOCKHEED-HUNTSVILLE ENGINEERING CENTER



i
I

!
I

I
l

LMSC-HEC TR F268592

I
I

I
I

I

I
I

I
I

O"

ql=

r_

!0

{..

@

oct'
co

0

,o-

9

Booster Bose Pressure CoefftcLent

0 - Current

0 - Two LRB

- Three LRB

+ - Four LRB

x - fLvo LRB

o
+

9
o

o

0
0

@
0 0

o +

O n ×
×

X

,.,,ll,,,l,,,,l,,,',l.

0.0 0.5 1.0 1.5 2.0

o
ID

×
@ ,,
z$ x
x

' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I

2.5 3.0 3.5 4.0

Moch Number

I
I

I

I

Fig. 2-20 Booster CPB vs Mach

33

LOCKHEED-HUNTSVILLE ENGINEERING CENTER



i
I
I

I

I

LMSC-HEC TR F268592

!

I
I

I
I

I

I
I

I

0-

rg

O"
O:b

c.)

i-4
LJ--

O"

o

,..., •

External Tank Base Pnessure OoeffLcLent

o - Current

o - Two LRB

- Three LRB

+ - Four LRB

x - FLve LRB

n

n

?
m J _'+

,,,,lU,,,l,

o.o 0.5 1.o

n

D

O

O

[3 0 O

Q 0 0 +

+ ll
++ +

+

o

o A

+

I ' ' ' ' I ' ' ' ' i ' ' ' ' I ' ' ' ' I ' ' ' ' 1.

1.5 2.0 2.5 3.0 3.5 t.0

Moch Number"

I

I
I

I

I

FiB. 2-21 ET CPB vs Mach

34

LOCKHEED-HUNTSVILLE ENGINEERING CENTER



I

I _SC-HEC TR F268592

!

!

!
Noted VehLcte Bose

I Dro 9 Increment

8

_! o - Two LRB

I 0 - Three LRB

i S _ - Four LRB

I X /\ +- Ftve LRB
,i V\

_"
I °_

_=

!

|

o
.°

?

' ' ' I ' I I ' I I I ' 1 1 i ' ' I ' ' ' ' l ' ' ' ' I ' ' ' ' I ' ' ' ' I

O.O 0.5 1.0 1.5 2.0 2,5 3.0 3.5 '4.0
Moch Number

I

I
I

I

I

Fig. 2-22 CD Increment vs Mach

35

LOCKHEED-HUNTSVILLE ENGINEERING CENTER



I

I
I

I

I

LMSC-HEC TR F268592

I
I

I

I
I

I
I
I

I
I

I
I

I
I

{D
0.

0
o

6

(,d
C_

.o

?

c
_p
E

z
(3

0

Moted VehLcLe NormoL

Force Increment

o

o - Two LRB
0 - Three LRB

- Four LRB

+ - FLve LRB

8

Current 5T5

O

O

o o

• 0

0

z_ 0

o
+

.... i ' ' ' ' '1 ' ' ' ' I ' ' ' I ' ' ' ' I ' ' I , I ' '

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Moch Number

0

0

3.5

Fi&. 2-23 CN Increment vs Mach

36

LOCKHEED-HUNTSVILLE ENGINEERING CENTER

i

4.0



I
I

i

I
I

LMSC-HEC TR F268592

I
i
!

I
I

I

I
I
i
I

I

I

I
I

0

E
@
L
O
C

°.

0o
0

Noted VehLcte Pttchtn 9

Moment ]ncrement

mm
w

O = Two LRB

o - Three LRB

- Four LRB

+ = FLve LRB

z_ z_

m _ _ o
n

A

@
0

0

D

0

0

n @

o

@

@ 0

0

z_

+
o

O

Current STS

0

i_ ' ' ' ' I ' ' , ' I ' ' ' ' I ' ' ' ' I " , , ' i ' ' , , I '

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Moch Number

Fi&. 2-24 CM Increment vs Math

37

LOCKHEED-HUNTSVILLE ENGINEERING CENTER

l ' ' ' ' i

3.5 4.0



I

I
i

I
I

I
I

I

I
I

I

I
I

I
I
I

I

I

I

LMSC-HEC TR F268592

2.5 DATA ANALYSIS REVIEW

2.5.1 Data Analysis Review of Longitudinal Effects

Test data were analyzed to determine longitudinal effect at negative

angles of attack. From the test data, it was concluded that the axial force

coefficient (CAF) increases with the diameter and length. The maximum CAF

occurs between 170 and 180 ft. See Fig. 2-25 for a plot of CAF vs booster

length and diameter.

The normal force coefficient (CN) is relatively unaffected by changes

in length. However, increases in diameter do produce a decrease or more neg-

ative CN. This decrease is partially due to the larger nose of the vehicle.

Since the nose of the LRB generated the majority of the normal force,

increasing the nose area will increase the normal force produced, whereas

_ncreasing the length will have very minimal effect on CN. The increased

plan form area is also a contributing factor. See Fig. 2-26 for a plot of

CNF vs booster length and diameter.

The pitching moment coefficient decreases with an increase in length due

to the forward movement of the LRB nose. An increase in diameter has minimal

effects on CM. The LRB length also changes the moment arm. See Fig. 2-27

for a plot of CMF vs booster length and diameter.

The aerodynamic center location moves forward with increases in length

and diameter due to the increased loading and forward movement of the LRB

nose. See Fig. 2-28 for a plot of XAC vs booster length and diameter. A

summary of vehicle longitudinal effects can be found in Table 2-4.

2.5.2 Data Analysis Review on Wing Loads

Analysis of the data with regard to wing loads indicated the wing root coef-

ficients and elevon hinge moments are relatively unchanged by increase in length.

However, an increase in diameter increases all wing loads including wing shear,

root bending, root torsion, and inboard/outboard elevon hinge moments.
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Table 2-5 SUMMARY OF VEHICLE LONGITUDINAL EFFECTS

• AXIAL FORCE

- CAF Increases with Diameter (increased frontal area) and Length

- Maximum CAF Occurs at LRB Lengths between 170 and 180 ft.

• NORMAL FORCE

- C Relatively Unaffected by Changes in Length
N

- C Decreases (becomes more negative) with Increases in Diameter
N

• Larger Nose is Partially Responsible

• Increased Plan Form Area a Possible Contributor

-C Increases with Increase in Diameter
Ne

-C Relatively unaffected by Change in Length
Nn

O PITCHING MOMENT

- CM Decreases with Increase in Length

• Caused by Forward Movement of LRB Nose

- Increased Diameter Affects CM as a Function of LRB Length

• LRB Length changes Moment Arm

- C Decrease (slope becomes less negative) with Increases in
M=

Length and Diameter

• AERODYNAMIC CENTER LOCATION

- XAC moves Forward with Increases in Diameter

• Increased loading on LRB Nose

-XAc moves Forward with Increases in Length

• Forward movement of LRB Nose
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3. PHASE II LIQUID ROCKET BOOSTER TESTING

The analysis of Phase I data indicated that increasing the diameter over

15 ft produced wing load levels that were unacceptable. In order to reduce

the level of wing loads, various innovative configurations were designed and

tested. Phase II data were the result of the wind tunnel testing for the new

configurations. This section delineates the results of the Phase II configura-

tions and a comparison between Phase I and II data.

3.1 TEST CONDITIONS AND CONFIGURATIONS

During Phase II a number of configurations were tested which included

comparable Phase I designs (Fig. 3-1a), Hammerhead designs (Fig. 3-1b), a

stacked booster design (Fig. 3-Ic) and a rotated stack design Fig. 3-1d).

Test conditions for these configurations can be found in Table 3-1.

3.2 TEST RESULTS

The majority of this section presents a comparison of Phase I and Phase

II results. Therefore, most of the discussion will pertain to config-

urations SDI2LI and SDIS. For a look at the results dealing with other config-

urations tested see Figs. 3-8a to 3-8i for increments vs Mach number and Figs.

3-9a to 3-9e for increments vs LRB di.ameter. Table 3-3 summarizes the effects

of LRB diameter on increments for the hammerhead, stacked, and rotated stack

configurations.

3.3 PHASE I AND II COMPARISONS

Comparison between Phase I and Phase II LRB wind tunnel test data revealed

discrepancies in the incremental data of identical configurations at transonic

Mach numbers. Through analysis it was determined that the cause of the differ-

ences was bad baseline data obtained during Phase I testing.
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This section discusses the analysis performed to determine the validity of

both sets of data. The conclusions and recommendations resulting from this

analysis ace presented at the end of the section.

3.3.1 Data Analysis

Figure 3-2 represents a sketch of the configurations for which data were

obtained during Phase I tests. Table 3-2 provides the Phase I test matrix for

wind tunnel tests. In order to distinguish between the Phase I and Phase II

test data of identical configurations different nomenclatures were used. Sim-

ilarly, SDI2LI represents the DILl (baseline) configuration. It is important

to note that all coefficient data have been interpolated to even angles of at-

tack. No data were generated by interpolating between test Maeh numbers.

Comparisons between Phase I and Phase II incremental data are presented

in Figs. 3.3a through 3.4f for the D2L2/SDI5 configuration. The agreement

between CNF, CMF, CSR, and CBR data is reasonably good except at the transonic

Mach numbers of I.I0 and 1.25. The CAF and CTR data are in good agreement

over the entire Mach number range.

Shown in Figs. 3.4a through 3.4f are comparisons between Phase I and

Phase II total data obtained for the D2L2/SDI5 configuration for Mach numbers

ranging from 0.6 to 1.46. The agreement between the two sets of data is quite

good for all coefficients. Figures 3.5a through 3.5f compare Phase I and

Phase II total data obtained for the DILl/ SDI2LI configuration. All of the

data at Mach numbers less than I.I0 agree reasonably well. Additionally, CAF

and CTR data continue to agree well throughout the entire transonic Math

number range. At Mach numbers ranging between I.I0 and 1.25, there is

considerable difference between Phase I and Phase II results for CNF, CMF,

CSR, and CBR.

From the data comparisons made thus far, it is clear that the cause of

differences seen between the Phase I and Phase II incremental data is invalid

baseline (D151/SD12L1) data. The problem now is to determine which set of

data is incorrect.
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3.3.2 An$1e of Attack Trends.

From the analyses conducted thus far, it is obvious that the Phase I

DILI/SDI2LI CNF, CMF, CSR, and CBR data are incorrect at Mach numbers between

I.I0 and 1.25 at an angle of an attack of -4 deg. Presented in Figs. 3-6a

through 3-6h are plots of total coefficient data which show both angle of

attack trends and diameter trends for different LRB configurations. From

Figs. 3-6a through 3-6h, it is quite clear that there are significant

differences between Phase I and Phase II results for the DILI/SDI2LI

configuration at angles of attack ranging from -4 deg to 0 deg. Although

positive angle of attack data are not presented in Figs. 3-6a through 3-6h,

previous analyses have shown that significant differences between Phase I and

Phase II DILI/SDI2LI data do exist throughout the entire angle-of-attack range.

Figures 3-6a through 3-6h also show that the Phase I and Phase II

D2L2/SDI5 data are in good agreement at angles of attack between -4 deg and 0

deg. Once again, previous analyses have shown that this agreement continues

at positive angles of attack.

3.3.3 Results of Data Comparison

It has been determined that the Phase I DILI/SDI2LI total CNF, CMF, CSR,

and CBR data are invalid at Mach numbers between I.I0 and 1.25. Thus, all of

the Phase I incremental data that were generated at these Mach numbers are

also invalid.

Most likely, the cause of the bad Phase I data is potential tunnel

operating errors. Table 3-2 is a matrix of the Phase I test runs. It has

been shown that runs TWT033, TWT0037, and TWT041 contain bad data. If indeed

the potential tunnel errors resulted in the bad data, then it is quite likely

that all of the "DI" data at Mach numbers between I.I0 and 1.25 (runs TWT033

through TWT044) are also bad due to the consecutive order in which the runs

were conducted.
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Figures 3-7a through 3-7f contain comparisons of Phase Z "DI" data and

Phase II DIL1/SD12L1 data. Figures 3-7a through 3-7f show that some of the

inconsistencies seen in the Phase I DIL1/SD12L1 data at Mach numbers between

1.10 and 1.25 are also present Jt_ the DIL2, DIL3, and DIL4 data. Thus, the

validity of the Phase I DIL2, D]L3, and DIL4 total data at Math numbers

between I.I0 and 1.25 cannot be confirmed.

It appears that the extent of the bad Phase I data is limited to runs

TWT033 through TWT044 (i.e., only the "DI" configurations). Referring back to

Figs. 3-6a through 3-6h, the trends produced by the larger diameter configu-

rations appear to follow the initial trends of the valid (Phase II) DILI/SDI2LI

data and the D2L2/SDI5 data. Unfortunately, there are no Phase II data avail-

able to confirm the validity of the Phase I "DY' and "'D4" data.

It is recommended that a modified Phase I data base be developed. This

would be a relatively simple task requiring an additional six test runs. The

additional runs that would be needed are given in Table 3-3. It is further

recommended that the increment development method documented inLockheed-

Huntsv£11e IDC 88FT44 be used in creating the new Phase I LRB incremental data

base.

Table 3-3 ADDITIONAL TEST RUNS SUGGESTED TO REDEVELOP PHASE I DATA BASE

Configuration M = I.i0 M = 1.25

DIL2 X X

DIL3 X X

DIL4 X X

7O
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4. LRB LATERAL/DIRECTIONAL WIND TUNNEL DATA

The LRB Lateral/Directional incremental data were taken from Wind Tunnel

Test TWT0716. The test was conducted from April 1988 to June 1988 to

investigate length and diameter effects on the lateral/directional aerodynamic

characteristics of the SSLV. Figure 4-1 presents the scope of the test. The

configurations used in the test are presented in Figure 4-2.

The aerodynamic increment coefficients were for the total vehicle and

were generated using the following equation:

g DXLY = DXLY - DILl

where: X = either 2 or 3 (15' or 18' diameter)

Y = either 1,2,3, or 4 (length variations ranging from 149' to 190').

The increments can be used to determine the coefficient increment for any LRB

configuration. New LRB coefficients equal the current SSLV values plus the

increments.

The wing data (bending, shear, torsion) increments are for the right

winE. The elevon data (inboard and outboard) increments are for the left

winE. All data are for alpha - 0 and have been uniformly shifted by an

incremental value so that beta = 0. Sign conventions for the launch vehicle,

winE, and elevon data are shown in Figure 4-3.
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During analysis of the LRB lateral/directional data, some basic trends

were observed. The trends are for unshifted increments and are given below.

I. C¥ Trends

- Generally ICYBi increases in diameter. Thus, for a given B,

[gCY[ increases with increases in diameter.

-For M _ 1.05, LRB length variation has no significant effect on

CYB •

- For 1.05 < M < 1.80, {CY_i generally decreases with increases

in LRB length.

- For M _ 1.80, length trends switch so that IcY81 generally

increases in LRB length.

- Typically, LRB length and diameter effects on SSLV CY B values are
less than 15%.

2. CYM Trends

- Generally, [cYssl increases with increases in diameter. Thus,

for a given B, ]gCYMi increases with increases in diameter.

- Generally, ICYMsl decreases with increases in LRB length.

-- Typically, length and diameter effects on SSLV CYM B values are
less than 20%.

3. CRM Trends

Generally, IC_B{ decreases with increases in diameter. Thus,

for a given B, [gCRMI increases with increase in diameter.

- LRB length generally has a small effect on ACRM and thus CRM 8.

- Typically, length and diameter effects on SSLV CRM B values are
less than 20%.
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4. CSR Trends - Right Winz

- For all B values, ACSR generally increases as LRB diameter
increases.

- For B > 0 and a given diameter, ACSR generally increases as B

increases for all M.

- LRB length effects on 6CSR are small.

5. CBR Trends - Right Win_

- For all B values, ACBR generally increases with increases in LRB
diameter.

- For B > 0 and a given diameter, ACBR typically decreases as B

becomes more negative.

- LRB length effects on ACBR typically decreases as B becomes more

negative.

- LRB length effects on ACBR values are small.

6. CTR Trends - Right Win_

- For 1.80 _ M < 3.48, diameter increases typically cause ACTR to

decrease for all B. For other Mach numbers, 6CTR usually increase
with increases £n LRB diameter.

- No consistent B trends appear to exist for the Mach numbers tested.

- LRB length effects on ACTR values are small.

7. Hinge Moment Trends - Left Win_

- Inboard - ACHEI

• ACHEI generally increases with increases in diameter except for

1.8 _ M ! 2.5, where it decreases as B increases.

• ACHEI typically decreases as B increases.

• LRB length effects on ACHEI are small.

- Outboard - ACHEO
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.

• _CHEO generally increases with increases in diameter except for

1.8 _ M _ 2.5, where it increases in diameter.

• No consistent B trends are apparent.

• LRB length effects on ACHEO are small.

Additional Trends

• B effects on _CNF, ACMF, _CAF are small for all configurations.

The data from the wind tunnel test were analyzed with regard to yaw angle

effects of shuttle wing loads. At Mach= 1.96 the incremental wine loads are

a strong function of both LRB length and yaw angle. Unlike the longitudinal

data, the LRB diameter was found to have a small effect on wing loads.

Analysis of the test data for the various configurations leads to the

conclusion that the aft skirt on DILl configurations does not significantly

affect wing loads. It was also determined that the MDI5 (hammerhead) con-

figuration greatly reduces the wine loads over the entire yaw ankle range

tested. The maximum incremental loading on a wine occurs when it is on the

leeward side.
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Table 4-1 DIAMETER EFFECTS OF PHASE II CONFIGURATIONS

• DTAMETER EFFECTS - AN INCREASE IN DIAMETER INCREASES _CNF,

MOVES XCp FORWARD, INCREASES BOTH ACN-WING_ AND ACTR

• LRB ROTATION EFFECTS (OSXXXX RUNS) - ROTATING THE LRBs DOWN-

WARD HAS A SMALL EFFECT ON ACMF VALUES, PLACE XCp OF THE

INCREMENTAL LOADING ON THE MOON, HAS A SMALL EFFECT ON BOTH

ACN-WING AND ACTR

• HAMMERHEAD EFFECTS (MDXXXX RUNS) - MULTI-DIAMETER LRBs CREATE

LARGE CHANGES IN AC VALUES, HAVE A SMALL EFFECT ON AC VAL-
NF MF

UES MOVE X FORWARD, CAUSE A DECREASE IN A C -WING AND AC
CP N TR

• STACKED CONFIGURATION EFFECTS (STXXXX RUNS) - STACKING LRBs

CREATE LARGE CHANGES IN ACNF VALUES AND ACMF, PLACES XCp

AT THE BASE OF THE ORBITER, CAUSES A SMALL INCREASE IN C -WING
g

• HAMMER GAP AND FLOW EXPANSION ARE EFFECTIVE IN REDUCING WING

LOADS.
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5. PROTUBERANCE EFFECTS

Wind tunnel testing was conducted to investigate the aerodynamic

effects of protuberances on the SSLV. This section details the results of

protuberance analysis from wind tunnel testing. Three configurations were

tested: a baseline SRB, an SRB without protuberances, and an SRB with out

the IEA Cover. The fairing configurations were also varied. Figures 5-1

and 5-2 present the four configurations analyzed. A Math number range of

0.8 to 4.45 was used for testing. Results from the test can be found in

Figs. 5-3 to 5-20 which depict protuberance and fairing efforts.

5.1 PROTUBERANCE EFFECTS

Analysis indicated that SRB protuberances have major effects on wing

toads. A significant increase in the vehicle normal force increment is ex-

hibited in the presence of SRB protuberances. The majority of the increase

can be attributed to orbiter wing shear. Further, the SRB/ET aft attach

ring/ IEA position and geometry have adverse effects on the orbiter ascent

wingloads. Wind tunnel testing suggested that ascent wing load reduction

can be accomplished by removal or modification of the IEA/attach ring.

Additional efforts, however, would be required to study the impact of the

IEA relocation. Also a trajectory analysis should be considered to

determine performance or launch probability increase due to wing load

reduction. Finally, a complete evaluation of the fairing configurations

should be performed with regard to aerodynamic enhancement.
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for an identical SSLV configuration less protuberances. Analysis of the SRB

protuberance data increments can be summarized as follows:

The longitudinal and wine total data show uniform shifts between

BLSRB and SDI2LI+AS. Corresponding increment plots show data scatter

only.

Hinge moment protuberance total data do not always give consistent

changes for changes in alpha. A single number will not always give a

good representation of the protuberance increment.

For M = 1.46, the change in normal force at a = -2 is 0.04. The

corresponding change in shear is 0.0191 (2 x 0.0191 - 0.0382). Hence

an increase in normal force is mostly due to an increase in wine

shear. This shows that the data are consistent.

All increment data fall within a reasonable band, as shown in the

maximum and minimum coefficient table.

• Some Xcp values are questionable at higher Mach numbers (E 2.74).

Wing Xcp values are reasonable, moving aft and slightly inward with

higher Mach numbers. The exception is M = 4.43, where the wine Sop

values are located within the body.

It was then determined that LRB configurations that do not utilize the SRB

type protuberances need to have the protuberance increments subtracted from

the aerodynamic data base. To completely exclude the effects of SRB prot-

uberances from a configuration using Phase I LRB data bases, the coef-

ficients should be subtracted from the corresponding coefficients of that

configuration.
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5.2 SRB INCREMENT DATA BASE SUMMARY

Data analysis resulted in the Eeneration of a protuberance incremental

data base. The protuberance incremental data were generated by taking the

difference between the baseline aerodynamic coefficient data of the SSLV with

the baseline protuberances included and the aerodynamic coefficients obtained

for an identical SSLV confiEuration less protuberances. Analysis of the SRB

protuberance data increments can be summarized as follows:

o

o

The lonEitudinal and wine total data show uniform shifts between

BLSRB and SDI2LI+AS. Corresponding increment plots show data scatter

only.

HinEe moment protuberance total data do not always Eive consistent

chanEes for chanEes in alpha. A sinEle number will not always give a

good representation of the protuberance increment.

o For M = 1.46, the change in normal force at a = -2 is 0.04. The

correspondinE change in shear is 0.0191 (2 x 0.0191 - 0.0382). Hence

an increase in normal force is mostly due to an increase in wine

shear. This shows that the data are consistent.

o All increment data fall within a reasonable band, as shown in the

maximum and minimum coefficient table.

o Some Xcp values are questionable at higher Mach numbers (_ 2.74).

Wine Xcp values are reasonable, moving aft and slightly inward with

higher Mach numbers. The exception is M = 4.43, where the wing Scp
values are located within the body.

It was then determined that LRB configurations that do not utilize the SRB

type protuberances need to have the protuberance increments subtracted from

the aerodynamic data base. To completely exclude the effects of SRB prot-

uberances from a configuration using Phase I LRB data bases, the coef-

ficients should be subtracted from the correspondinE coefficients of that

configuration.
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6. GAP AND AFT SKIRT EFFECTS

The effects of the LRB/ET separation gap width and the aft skirt on the

aerodynamics of the SSLV were analyzed. Data were obtained from wind tunnel

testing on two configurations at Mach speeds from .9 to 1.5. Figures 6-1 and

6-2 present the configurations analyzed and the corresponding nomenclatures.

The gap width was varied on both configurations from 12 in to 33 in. Angles

of attack ranged from -4 to zero in increments of two. Analysis of the gap

width was conducted with respect to changes in CNF, CAF, CSR, CBR, and

CTR values. The objectives of the aft skirt analysis were to detemmine the

protuberances, diameter, and length effects on wing loading.

6.1 GAP EFFECTS SUMMARY

The data from the wind tunnel were analyzed to determine the effect of

gap width on the aerodynamic coefficients. Figures 6-3 to 6-17 show results

for DILI configurations, Figs. 6-18 to 6-32 for the D2L2 configurations. It

was determined that increasing the gap width causes an increase in CNF

values and a decrease in CMF values at negative angles of attack and

transonic Mach numbers. CAF values tend to increase with increasing gap

size in the transonic and supersonic image.

At Mach 1.46, increases in the gap width cause a slight increase in C
SR

values for both the DILl (baseline) and D2L2 configuration. However, at Mach

1.25 a slight increase occurs in the C values for the DIL1 configuration
SR

where as a slight decreases occurs in the D2L2 values. At the same Mach

numbers, it was observed that the CBR values for both configurations

increase as the gap width increases. The CTR values and elevon hinge

moments decrease slightly on both configurations as gap width increases.
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Fig. 6-2 Gap Effect Configurations (D2L2)
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6.2 AFT SKIRT EFFECTS SUMMARY

Data were also obtained from the wind tunnel test to determine the

effects of aft skirts on aerodynamic coefficients. The two types of

configurations tested, DILl and D2L2, can be found in Figs. 6-33 and 6-34.

The test results can be found in Figs. 6-35 to 6-48 for DIL1 confisurations,

and in Fiss. 6-49 to 6-58 for D2L2 configurations.

The conclusion from the analysis of the aft skirt effect is that the

addition of the aft skirt had little effect on either total vehicle data or

wind data. The addition of the skirt also had little effect When analyzing

diameter and length effects.
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7. LRB BASE DRAG STUDY

As part of the effort in selecting a booster in the proposed LRB concept

for the space shuttle program, Lockheed Missiles and Space Co. conducted a

base drag study on a number of candidate boosters. At the root of the study

was the development of a computer code which would calculate base drag based

on the methods found in the Compendium of Flight Vehicle Base Pressure and

Base Drag Prediction Techniques (Lockheed Missiles and Space Co.; August

1983. Once the code was operational it was used to obtain base drag estimates

on two Martin Marietta and two General Dynamics LRB configurations. These

results were compared with those found in an earlier base drag study,

conducted by Lockheed. The final results were then selected, and included in

the shuttle aerodynamic data base.

7.1 ORIGINAL BASE DRAG ESTIMATES

A study hereafter was conducted in late 1987 called the baseline study on

base drag effects for a number of generic LRB configurations, having I, 2, 3,

4, and 5 nozzles (see FiE. 7-1) The study used as its basis the same base

dcaK compendium mentioned above. The results were calculated for an STS

vehicle with SRB's (see FiE. 7--2) and with an average LRB, Fig. 7-3. The

trajectory used in these calculations can be found in Figs. 7-4 to 7-6.

Results for total base drag were calculated for each (see Figs. 7-7, 7-8, and

Tables 7-1, 7-2). To obtain delta base drag values (Fig. 7.9 and Table 7-3),

the SRB results were subtracted from the LRB results. These delta base drag

values were the proposed results to be included in the shuttle aerodynamic

data base.
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SHUTTLE BOOSTER CONFIGURATIONS IN STUDY

Current SI_ Tuo-EnRine LRB

F - 2,650,000 F - 1,522,0OO (FI)

¢ - 7.16 ¢ - 16

_ 146" F

Three- Enl_tne LRB

F .. 1,0OO,0OO

¢-16

965

240"

48"

L.
L_I /_3

Four-Enstne LRB

Y - 418,000 (SSHE)

¢-35

Pc" 3000

Flve-Enaine LRB

F " 669,000

¢'7

Pc" 375

FiE. 7-I Baseline Study LRB ConfiEucatLons
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Table 7--I BASELINE CONCEPT (SRB)

ALT(ft)

BASELINE CONCEPT {SRB)

TOTAL BASE DRAG

Q(psf) LV(ibs) ORB(!bs) 2SRB(Ibs)

F268592

ET(ibs)
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0.60 9169.00 383.80 85508.00 20696.00 19973.00 44839.00

0.74 13188.39 503.84 97314.00 23465.90 20358.00 53491.00

0.87 17772.60 588.80 100753.00 24465.40 18761.10 57527.30

1.01 22832.80 644.33 106169.00 28484.40 17515.40 60169.20

1.14 274!8.19 683.19 112520.00 32424.20 16575.20 63520.60

1.29 32386.86 711.47 69953.00 21842.33 5638.74 42472.41

1.48 37932.33 724.0I 30910.00 14765.33 -3091.34 19236.06

1.71 44451.32 699.98 2197.00 8564.36 -8530.64 2163.47

1.98 51310.85 663.64 -19574.00 3390.80 -11330.00 -11635.05

2.26 58188.39 615.26 -35652.00 -535.40 -12541.40 -22575.80

2.82 78577.51 401.67 -39647.00 -2593.00 -10327.48 -26727.16

3.44 105414.84 176.63 -34905.00 -2050.50 -6368.16 -26487.22

4.03 130953.59 2.05 -30393.00 -1534.25 -2600.42 -26258.89
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I
I

I

I

MACH

0.60

0.74

0.87

1.01

1.14

1.29

1.48

i .7!

1.98

2.26

2.82

3.44

4.03

LMSC-HEC TR F268592

Table ?-2 BASELINE CONCEPT (LRB)

ALT(ft)

BASELINE CONCEPT (LRB)

TOTAL BASE DRAG

Q(psf) LV(ibs) ORB(IbS) 2LRB(Ibs) .ET(Ibs)

9169.00 383.80 136013.00 20696.00 70478.00

13188.40 503.85 154065.30 23465.90 77108.40

17772.00 558.80 159681.00 24633.00 77661.00

22832.80 644.33 163921.41 28484.40 73288.40

27418.20 683.19 167289.41 32424.20 66598.80

32386.87 711.48 120595.48 21842.33 48409.20

37932.34 724.01 77027.26 14765.33 30752.46

44451.32 699.98 46252.27 8564.36 15576.88

51310.85 663.64 21057.50 3390.80 1627.15

58188.40 615.26 787.00 -535.40 -10060.40

78577.52 401.68 -6680.68 -2593.00 -18194.00

105414.84 176.64 -2712.06 -2050.50 -20240.00

130953.59 2.05 1064.53 -1534.25 -22187.00

44839.00

53491.00

57527.00

62160.60

68288.00

50343.94

31557.46

22130.64

16028.55

11382.80

14106.32

19578.44

24785.78
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Table 1-3 BASELINE CONCEPT (LRB)

ALT(FT)

BASELINE CONCEPT (LRB)

DELTA BASE DRAG

Q(psf) LV(ibs) ORB(Ibs) 2RB(Ibs)

9169.00

13188.39

17772.60

22832.80

27418.19

32386.86

37932.33

44451.32

51310.85

58188.39

78577.51

105414.84

130953.59

383.8

503.8

588.8

644.3

683.2

711.5

724.0

700.0

663.6

615.3

401.7

176.6

2.0

50505 00

56751.30

58928 00

57752.41

54769 41

50642.48

46117 26

44055.27

40631 50

36439.00

32966 32

32192.94

31457.53

ET(Ibs)
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F268592

0.00 50505.00 0.00

0.00 56750.40 0.00

0.00 58899.90 0.00

0.00 55773.00 1991.40

0.00 50023.60 4767.40

0.00 42770.46 7871.53

0.00 33843.80 12321.40

0.00 24107.52 19967.17

0.00 12957.15 27663.60

0.00 2481.00 33958.60

0.00 -7866.52 40833.48

0.00 -13871.84 46065.66

0.00 -19586.58 51044.67
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7.2 BASE DRAG CALCULATION CODE

Prediction of base drag for a given configuration can be a tedious ef-

fort, considering all the variables associated with it. A faster means of

calculation was needed. Using the methods found in the Compendium of Flight

Vehicle Base Pressure and Base Drag Prediction Techniques, Lockheed developed

a FORTRAN computer code. It takes into account all the trajectory and geom-

etry effects found in the compendium, and obtains base drag predictions. See

FiE. 7-10 for a flow diagram of the code and Fig. 7-11 for sample results.

7.3 STS FLIGHTS 2, 3, and 5

In order to obtain delta base drag values using the new prediction code,

an STS vehicle with SRB's, on a typical STS trajectory, had to be found to

submit from. This typical case was found by using an average of STS flights

2, 3, and 5. The typical trajectory used can be found in Figs. 7-12 to 7-14.

The base drag results appear in Fig. 7--15 and Table 7-4.

7.4 MARTIN PUMP FED (I,RBI)

The first LRB candidate configuration used in the base drag code was the

Martin Pump Fed, shown in Fig. 7-16. The trajectory provided by Martin for

this case can be found in Figs. 7-17 to 7-19. The base drag results obtained

for this case can be found in Fig. 7-20 and Table 7-5. After subtracting

these results with those from STS 2, 3, and 5 the delta base drag values are

obtained (see Fig. 7-21 and Table 7-6). It is important to note the large

value for delta base drag found in the Mach 2.0 - > 3.5 mange.
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Fig. 7-10 Base Drag Calculation Code Flowchart
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THRUST TOT (LB) 5780105.

BOOSTER THRUST (LB) 2162044.

ORB THRUST (LB) 1456018.

T/A BOOSTER 6550.385

T/A ORB 3356.921
T/A ET 3415.838

PLUME ANGLE (RB ORB) 63.61095 26.83385

UNCORRECTED (RB ORB

NOZZLE EXT (RB ORB

NON CYLINDER (RB ORB

FINS (RB ORB

TOTAL Pb/Pi (RB ORB

ET) 1.828659 1.178031

ET) -1.9599998E-02 1.0091913E-02

ET) -0.1060880 O.O000000E+O0

ET) 0.O000000E+O0 -2.1762000E-02

ET) 1.702971 1.166361

1.199655

O.O000000E+O0

O.0000000E+O0

0.O000000E+00

1.199655

CPB (RB ORB

CDB (RB ORB

DFB (wo/HS) (RB ORB

DFB (wo/NS) (TOTAL)

ET) 0.1262819 2.9885069E-02 3.5866115E-02

ET) -9.2637083E-03 -3.3462415E-03 -7.9770088E-03

ET) -19042.89 -3439.341 -8198.946
-3068i.18

NOZ SP Pb/Pi (RB ORB

NOZ SP Pb (RB ORB

NOZ SP DRAG (RB ORB

ET) 8.000000 0.O000000E+O0 2.6LL960

ET) 561.0982 O.O000000E+00 183.1957

ET) -L6015.68 0.0000000E+O0 -18248.94

DFB (w/NS) (RB ORB ET)

DFB (w/NS) (TOTAL)

-51074.26 -3439.341 -26447.89

-80961.48

Fig. 7-11 Base Drag Calculation Code Output

210

LOCKHEED HUNTSV!LLE ENGINEERING CENTER



I

I
I

I
I
I

I
l

I
I

I

I
l
I
I

I
I

I

I

A
I'-

W
o

F-
.J

15OOOO

I_O_,

,5{)O{)0

0

0

LMSC-HEC TR F268592

STS 2,3,5(SRB)

| i

MACH NUMBER

•--.,-el--- STS 235

Fi E . 7-12 STS 2, 3, 5, Altitude vs Mach

211

LOCKHEED-HUNTSVILLE ENGINEERING CENTER



I

I
I

I
I
I

I
l

I
I

I

I
I
I
I

i
I

I

I

(n
o.

0

tOO0

8OO

6OO

4OO

2OO

STS 2,3,5 (SRB)

LMSC-HEC TR F268592

0 1 2 3 4 5

MACH NUMBER

•----=-- STS 235

Fi8. 7-13 STS 2, 3, 5 Q vs Mach

212

LOCKHEED-HUNTSVILLE ENGINEERING CENTER



I
I
I

I
l
I

I
I

I
I

I
I
I

I
I

I
I

I

I

U,I

Z

UJ

0.

tO0

8O

LMSC-HEC TR F268592

STS 2,3,5(SRB)

6O

4O

20,

0

0 50000 100000

ALTITUDE (FI")

150000

----e--- ASRB1

"---e--- AORB1

Fig. 7-14 STS 2, 3, 5 Plume An_le vs Mach

213

LOCKHEED-HUNTSVILLE ENGINEERING CENTER



I

I
i

i
I

I
MACH ALT(FT)

Table 7-4 STS 2, 3, 5, (SRB)

TOTAL BASE D_%G

Q(psf) LV(Ibs) ORB(IbS)

LMSC-HEC TR

2RB(ibs)

F268592

ET(Ibs)

I

I
I
I

I

I
I

I
I
i

I
I

I

0.60

0.74

0.87

1.01

1.14

1.29

1.48

1.71

1.98

2.26

2.82

3.44

4.03

9065.00 383.79 82508.93 16917.90 20155.25

13447.70 493.69 92581.52 18578.35 21273.24

17979.00 576.15 97112.17 19921.74 21016.70

23256.00 626.44 107046.77 22951.75 21263.98

28248.40 648.84 105831.92 25638.99 17478.22

33622.93 657.06 71643.03 17901.90 9384.42

39848.53 648.33 30772.77 11223.04 -542.03

46490.44 625.93 242.14 6507.47 -7259.87

53950.90 585.98 -21445.04 1472.69 -10187.36

61880.59 525.74 -35010.25 -2402.45 -11259.30

83994.19 323.72 -36647.77 -3974.51 -8090.34

111853.90 131.95 -31002.95 -3127.16 -4140.62

138365.56 2.05 -25631.26 -2320.82 -382.02

* AVERAGE VALUES FROM STS 2,3,5 FLIGHTS
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45435.77

52729.92

56173.72

62831.03

62714.70

44356.70

20091.76

994.54

-12730.37

-21348.49

-24582.91

-23735.16

-22928.42
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Table 7-5 MARTIN PLUMP FED

TOTAL BASE DRAG

Q(psf) LV(Ibs) ORB(Ibs)

LMSC-HEC

(LRBI)

2RB (Ibs )

TR F268592

ET ( ibs )

I

I
I

I
I

I
I
I

I
I

I
I

I

0.60

0.74

0.87

i .01

1.14

1.29

1.48

1.71

1.98

2.26

2.82

3.44

4.03

11439.00

15188.00

18884.00

23056.00

27677.00

32728.00

38282.00

44439.00

51272.00

58804.00

75818.00

95308.00

117102.00

354.1 90121.27 22647.26 25439.72 42034.27

470.9 97449.14 24769.23 27356.17 45323.73

565.0 100679.61 26067.21 28357.47 46254.92

635.9 126811.89 33016.43 34399.14 59396.33

672.8 116658.11 30605.34 30472.93 55579.84

692.0 91287.60 25161.46 20321.63 45804.51

701.0 50612.79 16100.30 5776.70 28735.79

697.6 36313.83 13497.04 -235.69 23052.48

666.2 1891.44 8644.59 -18148.03 11394.88

588.9 -38116.73 2935.08 -40194.39 -857.42

399.1 -85398.99 -3402.95 -65108.59 -16887.46

241.4 -64089.47 -3830.44 -38310.08 -21948.95

128.1 -33940.29 -2794.35 -17728.64 -13417.30
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Table 7 6 MARTIN PUMP FED (LRBI)

DELTA BASE DRAG

ALT(FT) Q(psf) LV(ibs) ORB(Ibs) 2RB(ibs)

LMSC-HEC TR

ET(ibs)

F268592

0.60 9065.00 354.1 7612.34 5729.36 5284.47 -3401.50

0.74 13447.70 470.9 4867.62 6190.88 6082.93 -7406.19

0.87 17979.00 565.0 3567.44 6145.47 7340.77 -9918.80

1.01 23256.00 635.9 19765.12 10064.68 13135.16 -3434.70

1.14 28248.40 672.8 10826.19 4966.35 12994.71 -7134.86

1.29 33622.93 692.0 19644.57 7259.56 10937.21 1447.81

1.48 39848.53 701.0 19840.02 4877.26 6318.73 8644.03

1.71 46490.44 697.6 36071.69 6989.57 7024.18 22057.94

1.98 53950.90 666.2 23336.48 7171.90 -7960.67 24125.25

2.26 61880.59 588.9 -3106.48 5337.53 -28935.09 20491.07

2.82 83994.19 399.1 -48751.22 571.56 -57018.25 7695.45

3.44 111853,90 241.4 -33086.52 -703.28 -34169.46 1786.21

4.03 138365.56 128.1 -8309.03 -473.53 -17346.62 9511.12

I
I

II
I
I

I
I

i
I
I

i

I

I

DELTA DRAG VALUES ARE BASED ON DELTA FROM STS FLIGHTS 2,3,5
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7.5 MARTIN PRESSURE FED (LRB2)

The next LRB candidate configuration used in the base drag code was the

Martin Pressure Fed, shown in Fig. 7-22. The trajectory provided by Martin

for this case can be found in Figs. 1-23 to 7-25. The base drag results

obtained for this case can be found in Fig. 7-26 and Table 7-7. After

subtracting these results with those from STS 2, 3, and 5 the delta base drag

values are obtained (see Fig. 1-27 and Table 7-8). It is important to note

the large value for delta base drag found in the Mach 2.0 - > 3.0 range.

7.6 GENERAL DYNAMICS 021H2 PUMP FED (LRB3)

The next LRB candidate configuration used in the base drag code was the

General Dynamics 021H2 Pump Fed, shown in Fig. 7-28. The trajectory provided

by General Dynamics for this case can be found in Figs. 7-29 to 7-31. The

base drag results obtained for this case can be found in Fig. 7-32 and Table

7-9. After subtracting these results with those from STS 2, 3, and 5 the

delta base drag values are obtained (see Fig. 7--33 and Table 7-10). It is

[mportant to note the large value for delta base drag found in the Mach 1.5 -

> 3.5 range.

7.7 GENERAL DYNAMICS 021RPI PUMP FED (LRB4)

The next LRB candidate configuration used in thebase drag code was the

General Dynamics Pump Fed shown in FiE. 7-34. The trajectory provided by

Martin for this case can be found in Figs. 7-35 to 7-37. The base drag

results obtained for this case can be found in Fig. 7--38 and Table 7-11.

After subtracting these results with those from STS 2, 3, and 5 the delta base

drag values are obtained (see FiE. 7-39 and Table 7-12. It is important to

note the large value for delta base drag found in the Mach 2.0 - > 3.5 range.
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Table

ALT(FT)

7-7 MARTIN PRESSURE FED (LRB2)

TOTAL BASE DRAG

Q(psf) LV(ibs) ORB(Ibs)

LMSC-HEC

2RB(Ibs)

TR F268592

ET(ibs)

0.60

0.73

0.94

1.07

1.21

1.38

1.57

1.81

2.05

2.28

2.75

3.30

3.86

8224.00

12404.00

20182.00

24713.00

29714.00

35229.00

41319.00

48042.00

55422.00

63460.00

81442.00

101970.00

125165;00

398.9 111153.84 25512.55 38288.93 47352.36

503.9 115526.58 26845.83 39516.39 49164.35

625.4 127219.05 30258.93 43060.29 53899.52

671.0 138130.73 33027.53 45859.09 59244.11

698.0 118996.87 29539.59 36713.43 52743.85

706.1 79519.70 20898.54 21128.10 37493.05

689.0 42197.63 14026.65 2531.22 25639.75

652.5 16510.84 10483.26 -13790.10 19817.68

576.2 -9962.88 5000.08 -24159.76 9196.80

473.6 -49951.26 276.37 -49719.78 -507.85

292.6 -69105.40 -3948.87 -55328.49 -9828.04

165.5 -45803.08 -5598.42 -29895.52 -10309.15

84.4 -27067.54 -2439.16 -15062.38 -9566.00
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Table 7-8 MARTIN PRESSURE FED (LRB2)

DELTA BASE DRAG

ALT(FT) Q(psf) LV(ibs) ORS(ibs) 2RB(ibs)

LMSC-HEC TR F268592

ET(Ibs)

I

I

I
I

i
I

I
!
I

I
!

I

I

0.60

0.73

0.94

i .07

1.21

1.38

1.57

1.81

2.05

2.28

2.75

3.30

3.86

9065.00 398.9 28644.91 8594.65 18133.68

13134.65 503.9 23664.53 8386.08 18323.01

20460.00 625.4 26567.23 8827.58 23086.47

25687.20 671.0 25395.14 8093.05 24272.83

30776.00 698.0 28257.98 7358.78 23106.31

36752.53 706.1 31916.80 7834.00 16607.88

42516.68 689.0 24036.60 3979.94 6961.17

49317.55 652.5 28352.84 6404.33 -4649.43

55858.75 576.2 15436.35 4600.55 -13541.41

62525.13 473.6 -14561.76 2846.27 -38554.68

80848.75 292.6 -31820.31 121.31 -46792.22

105563.00 165.5 -13525.49 -2279.92 -24863.03

130726.59 84.4 111.50 113.99 -13597.38

1916.59

-3044.56

-5346.82

-6970.72

-2207.09

7474.92

13095.48

26597.95

24377.21

21146.64

14850.58

13617,43

13594.87

" DELTA DRAG VALUES ARE BASED ON DELTA FROM STS FLIGHTS 2,3,5
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0.60

0.74

0.87

1.01

1.14

1.29

1.48

1.71

1.98

2.26

2.82

3.44

4.03
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Table 7-9 GENERAL DYNAMICS 02H2 PUMP (LRB3)

ALT(FT)

TOTAL BASE DRAG

Q(psf) LV(Ibs) ORB(ibs) 2RB(ibs)

8967.00 382.1 99706.46 24435.51 29917.63

12248.00 511.6 108641.82 26912.14 32484.75

15627.00 618.8 113187.52 28548.44 33981.34

21627.00 648.6 135482.20 33748.65 39947.76

25321.00 651.0 115992.51 29424.86 31099.15

33079.00 637.1 72657.88 21992.71 7210.25

38191.00 659.0 10533.36 13895.38 -26411.73

44691.00 641.8 -22206.24 10495.01 -49562.45

52458.00 594.8 -58799.78 6412.80 -72319.77

60462.00 528.7 -85485.80 2142.89 -84820.01

76703.00 382.1 -80961.48 -3439.34 -51074.26

94896.00 245.1 -64203.41 -3781.56 -28020.01

113267.00 146.6 -35320.96 -2895.41 -15719.96
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ET(ibs)

45353.33

49244.93

50657.73

61785.79

55468.50

43454.92

23049.71

16861.20

7107.20

-2808.68

-26447.89

-32401.84

-16705.59
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Table 7-10 GENERAL DYN_{ICS 02H2 PUMP (LRB3)

DELfA BASE DRAG

ALT(FT) Q(psf) LV(ibs) ORB(ibs) 2RB(Ibs) ET(ibs)

9065.00 382.1 17197.53 7517.61 9762.38

13447.70 511.6 16060.30 8333.79 11211.51

17979.00 618.8 16075.35 8626.70 12964.64

23256.00 648.6 28435.43 10796.90 18683.78

28248.40 651.0 10160.59 3785.87 13620.93

33622.93 637.1 1014.85 4090.81 -2174.17

39848.53 659.0 -20239.41 2672.34 -25869.70

46490.44 641.8 -22448.38 3987.54 -42302.58

53950.90 594.8 -37354.74 4940.11 -62132.41

61880.59 528.7 -50475.55 4545.34 -73560.71

83994.19 382.1 -44313.71 535.17 -42983.92

111853.90 245.1 -33200.46 -654.40 -23879.39

138365.56 146.6 -9689.70 -574.59 -15337.94

-82.44

-3484.99

-5515.99

-1045.24

-7246.20

-901.78

2957.95

15866.66

19837.57

18539.81

-1864.98

-8666.68

6222.83

DELTA DRAG VALUES ARE BASED ON DELTA FROM STS FLIGHTS 2,3,5
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Table 7--11 GENERAL DYNAMICS O2RPI PUMP FED (LRB4)

TOTAL BASE DRAG

ALT(FT) Q(psf) LV(Ibs) ORB(ibs) 2RB(ibs) ET(ibs)

8825.00 384.2 111958.64 24570.46 41784.38

12268.00 511.3 120945.38 26895.31 44835.93

15612.00 617.2 125708._4 28476.93 46700.87

19749.00 703.2 163307.53 36849.52 59631.35

25233.00 707.0 143871.08 32579.33 51236.24

30997.00 700.3 113054.79 25700.65 37776.69

37812.00 670.9 48943.43 14535.58 3492.97

46603.00 588.5 24445.61 7992.53 -3005.13

55905.00 505.2 -18465.70 3344.40 -33081.82

65080.00 425.0 -54432.28 -445.97 -57637.99

79785.00 329.8 -73499.05 -3327.81 -55249.38

96629.00 126.9 -47778.41 -2166.37 -31608.99

116507.00 129.2 -31993.45 -1015.14 -18291.99

45603.80

49214.13

50530.83

66826.65

60055.51

49577.44

30914.87

19458.21

11271.73

3651.69

-14921.86

-14003.06

-12686.32

245

LOCKHEED-HUNTSVILLE ENGINEERING CENTER



I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

MACH

0.60

0.74

0.87

1.01

1.14

1.29

1.48

1.71

1.98

2.26

2.82

3.44

4.03

LMSC-HEC TR

Table 7-12 GENERAL DYNAMICS 02RPI PUMP FED (LRB4)

DELTA BASE [)RAG

ALT(FT) Q(psf) LV(ibs) ORB(ibs) 2RB(ibs)

9065.00 384.2 29449.71 7652.56 21629.13

13447.70 511.3 28363.86 8316.96 23562.69

17979.00 617.2 28596.47 8555.19 25684.17

23256.00 703.2 56260.76 13897.77 38367.37

28248.40 707.0 38039.16 6940.34 33758.02

33622.93 700.3 41411.76 7798.75 28392.27

39848.53 670.9 18170.66 3312.54 4035.00

46490.44 588.5 24203.47 1485.06 4254.74

53950.90 505.2 2979.34 1871.71 -22894.46

61880.59 425.0 -19422.03 1956.48 -46378.69

83994.19 329.8 -36851.28 646.70 -47159.04

111853.90 226.9 -16775.46 960.79 -27468.37

138365.56 129.2 -6362.19 1305.68 -17909.97

* DELTA DRAG VALUES ARE BASED ON DELTA FROM STS FLIGHTS 2,3,5
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ET(ibs)

168.03

-3515.79

-5642.89

3995.62

-2659.19

5220.74

10823.11

18463.67

24002.10

25000.18

9661.05

9732.10

10242.10
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7.8 CONCEPT COMPARISON/CONCLUSION

The next step was to choose which of the base drag values to use in the

shuttle aerod:namic data base. The baseline study provided average values for

a set of LRB configurations, and the LRB base drag study a different set of

values for each specific configuration. If the base drag values have little

variance from one configuration to another and are a small percentage of the

total launch vehicle base drag, the baseline study results will be sufficient.

If the opposite case is true the values from the LRB base drag study should

be used. Shown in Figs. 7-40 to ?-43 are a comparison of total base drag from

both studies. In Fig. 7-42 the same I00,000 ib variation occurs in booster

base drag. In Fig. 7--43 up to 40,000 Ib variation is found when comparing ET

base drag.

When comparing the results from both studies a large variation can be

seen from one configuration to another and the difference is a significant

part of the total base drag. It is for this reason that Lockheed recommends

using the results from the new LRB base drag study.
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8. SUMMARY

Phase I and Phase II of wind tunnel tests comprise a number of LRB config-

urations varying in length and diameter, with and without protuberances and

aft _kirts and varying ET-LRB gap width.

Conclusions drawn from these tests, with regard to varying length/dia

meter, included the following Longitudinal Trends:

• CAF increased with both length and diameter.

• CNF was relatively unaffected by changes in length, but a more negative

CNF was produced by an increase in diameter.

• CMF was relatively unaffected by changes in diameter, but CMF decreases

with an increase in length.

• The aerodynamic center moves forward with an increase in both length

and diameter.

• Wing loading coefficients CSR, CRB, CTR, and elevon coefficients CHEf,

and CHEO were relatively unchanged by increase in length but were all

increased by increase in diameter.

Conclusions drawn from the tests, with regard to varying lengthldiameter,

included the following lateral/directional trends:

• [CYBI increases with increase in diameter. Length has little

effect on I_CY81 below M = 1.05, ICYBI decreases with

increase in length for 1.05 < M < 1.80, and increases with increase n

length for M > 1.80.

• ICYMBI increases with increase in diameter, and [gCYMF[

decreases with increase in length.

• ]CRMBI decreases with increase in diameter, and is relatively unaf-

fected by increase in length.

• IACSR] generally increases with increases in diameter (for all

8), and has little length effect.

254

LOCKHEED HUNTSVILLE ENGINEERING CENTER



I

I

I

I

I

i

!

I

l

I

i

I

i

I

I

i

I

I

I

LMSC-HEC TR F268592

• [ACTR[ for 1.80 < M < 3.48, an increase in diameter produces a

decrease in IACTRI (for all S); for all other M an increase in

diameter shows an increase in CTR. ]Length effects on CTR are small.

• ACHEI generally increases with increase in diameter except for 1.8 <

M < 2.5 where 6CHEI decreases. Length has little effect.

t ACHEO generally increases with increase in diameter except for 1.8 <

M < 2.5 where _CHEO decreases. Length has little effect.

Analysis of SRB protuberances showed that they had a major effect on both

wing loads and SSLV normal force coefficient. The test first recommended

modification of certain protuberances. It was later decided that since

proposed LRB configurations did not have these protuberances, the coefficients

should be removed for the LRB data base.

Conclusions drawn from the tests, with regard to varying gap width,

included the following trends:

• CAF increases as gap width increases for transonic and supersonic Mach

numbers.

• CNF increases as gap width increases in the transonic range (for

negative alpha).

• CMF decreases as gap width increases in the transonic range (for

negative alpha).

• Effects of gap width on CSR vary with configuration.

• CBR increases as gap width increases.

• CTR, CHEI, CHEO decreases as gap width increases.

Conclusions drawn from these tests, with regard to aft skirt variation,

showed that, with the exception of a slight increase in CAF, the aft skirt had

little effect on either wing or total vehicle data.

Finally, on the subject of base drag/plume effects it was concluded that

the effects were significant. It was recommended that each specific LRB

configuration's base drag be calculated before adding to the LRB data base.
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Appendix A

BASE DRAG CALCULATION CODE USERS GUIDE
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BASE DRAG CALCULATION CODE USERS GUIDE

A-I INTRODUCTION

The Base Drag calculation code, BASE4, is based on the methods found in

the Compendium of Flight Vehicle Base Pressure and Base Drag Prediction

Techniques, (Lockheed Missiles and Space Co., 1983). Sections 2 and 3 of this

document give a detailed background of base drag theory, which the code

follows. The remainder of this appendix will deal only with issues involved

in running the BASE4 Code, and assumes the user has some knowledge of the

parameters involved. If any questions arises the reader should refer to the

above document for more detail.

A-2 CODE ALGORITHM

BASE4 is presently set up to handle a SSLV, with the Orbiter, external

tank and a user selected pair of boosters. The boosters can vary in size,

configuration, and thrust profile. The user supplies the booster geometry,

thrust profile, and trajectory. Among the factors the code takes into account

during calculation are corrections for nozzle extension, non-cylindrical

shape, addition of fins, and nozzle spacing. A flow chart for BASE4 can be

found in Fig. A-I. A program listing can be found at the end of this section.

A-3 PARAMETERS

A list of parameters used in the BASE4 code can be found in Table A.I.

All units in the code assumed to be in the English system except where noted

otherwise. Those parameters in Table A-I noted with an asterisk "*" are

inputs supplied by the user, those with a "**" are tabular inputs supplied by

the user. Figures A-2 and A-3 depict these input parameters and their usage.

A-I
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A-4 PROGRAM INPUT/OUTPUT

AIL I/O in BASE4 is handtcd via fires. For input the user creates and

specifies the input file, which the code prompts for, and the code generates

five ouput files. The following describes these I/O files:

Filename Format

xxxxx. INP User supplied input file, See Fig. I-4 for a sample input

case.

BASE4.OUT Tabular listing of Mach, Altitude, Q, Total Base Drag,

Orbiter Base Drag, Booster Base Drag, and External Tank Base

Drag at each of the specified trajectory points. See FiE.

A-5 for a sample case.

BASE4.TRACE Listing of the calculation of base drag at each of the

specified trajectory points. See FiE. A-5 for a sample case.

BASE4.TRAJ Tabular listing of Mach, Kltitude, and Dynamic Pressure. See

Fi E . A-7 for a sample case.

BASE4.THRUST Tabular listing of Mach, Alttitude, Orbiter Thrust, Single

Booster Thrust, and Total Thrust, at each of the specified

trajectory points. See Fig. A-8 for a sample Case.

BASE4.PLUME Tabular listing of Mach, Altitude, Orbiter Plume Angle and

Booster Plume Angle at each of the specified trajectory

points. See FiE. A-9 for a sample case.

A-2
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INPUTS

GEOMETRY PARAtlETERS

TRAJECTORY PARAMETERS

I
m c 2.0 | m ) Z.O

EVALUATE C T EVALUATE

T/q ebeso T/M)aso

!
I GENERIC PRESSURE RATIO

Pb / PI

I CORRECTION FOR NOZZLE EXTENSION
A Pb / PI

| ._
CORRECTION FOR NON-CYLINDER

I _ Pb/PI

I 1
CORRECTION FOR FINS

TA

PblPI

I ,

L
TOTAL Pb / PI

._

EVALUATE PRESSURE COEFFICIENT

CP

EVALUATE D:i6 COEFFICIENT

EVALUATE DRAG

D = C D" Q" AREF

CORRECTION FOR NOZZLE SPACING I
I

"_ DRAG I

EVALUATE TOTAL DRAG

D=D* A DRAG

I
I

I

FLZ. A-I BASE4 Flowchart
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itl l

DCYLRB

t _ llll J l=

DBLRB DCYLRB

Flare Boatall

I

i INLRB = 1 INLRB = 3 INLRB = 4

_ 222 _
E_ XSLRB

I
I

I

I

I

Fig. A-2 Geometric Inputs
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INPUTS FOR MOTOR CHARACTERISTICS

EELRB - Nozzle Expansion Ratio

PCLRB - Motor Chamber Pressure

KOLRB - Motor Constant

(All three are inputs which determine the Booster's plume angle

effects at each given altitude in the trajectory)

Dj = K0 * (alt) * (Pc) 0•8 * (EE) -0"5

The inputs EEET, PCET and KOET, are the similar inputs for the

plume effects on the External Tank. These Values In general use

the same EE, Pc and K0 as the Booster•

AFLRB - Base Area Multiplying Factor

For I Nozzle - AFLRB = 1.0

For 2 Nozzles - AFLRB = 0.333

For 3 Nozzles - AFLRB = 0.333

FOR 4 Nozzles - AFLRB = 0.333

(This quantity accounts for the CP distribution that occurs in

the inner area between multi-nozzle set-ups)

TABULAR TRAJECTORY INPUTS

Trajectory inputs should be in the following form:

Mach(1) Altitude(1) Q(1) THTOT(1) THLRB(J)

• • • • •

• • • • •

• • • • •

Mach(n) Altltude(n) Q(n) THTOT(n)

THTOT is the total mated vehicle thrust

THLRB is the thrust of one booster

THLRB(n)

Fig. A-3 Motor Characteristics and Trajectory Inputs
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* INPLYT FILE FOR BASE_

VEHICLE - SSLV

** GEOMETRIC PARAMETERS

l [NLRB

17.3 DBLRB

12.2 DELRB

15.3 DCYLRB

4.9 XJLRB

0.0 XSLRB

0.0001713 KOLRB

7.[6 EELRB

105840. PCLRB

0.0001713 KOET

7.16 EEET

105840. PCET

1.0 AFLRB

** TRAJECTORY PARAMETERS

_ MACH, ALTITUDE, Q, TOTAL-THRUST,

;.613 9065.00000 383.79999

j.74 13447.70020 493.69998

U.87 17979.00000 576.15002

t.Ol 23256°00195 626.44000

l. 14 28248.40039 64_.84003

[.29 33622.93359 657.06665

[.48 39848.53516 648.33997

t.71 46490.44141 625.93597

1.98 53950.90234 585.98499

2.26 61880.59766 525.74005

2.82 83994.19531 323.72403

_._'_ I11853.90625 )31.95799

_, _3 i_B365o562_0 _.05000

BOOSTER-THRUST

6437333.00000

6039033.00000

5786666.00000

5569533.00000

5605800.50000

5926244.50000
6219244.50000

6416799.50000

6494199.50000

6473133.00000

5825667.00000

5030000.00000

4272932.50000

2607000.00000

2474000.00000

2369633.00000

956333.18750

2283133.50000

2369200.00000
2461622.50000

2522293.25000

2554483.00000

2538999.75000

2211053.50000

1810740.00000

I429796.375_)0

Fig. A-4 Sample Input File
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XXXXXXXX XXXX×X_X

TOTAL BASE DRAG

MACH ALT(FT) Q(psF) LV(ibs)

0

;)

l

,

i

!

l

2

2

3

_r

hO 9065.00 383.8 88103.11

74 13447.70 493.7 92256.71

97 17979.00 576.2 92559.63

_I 23256.00 626.4 106989.99

!4 28248.40 648.8 95184.19

29 33622.93 657.1 66081.19

_8 39848.54 648.3 24157.26

71 46490.44 625.9 4889.39

)8 53950.90 586.0 -18516.41

26 61880.60 525.7 -35989.62

_2 83994.20 323.7 -39757.47

4 [[1853.91 132.0 -26571.28

: _ _ 56 2.0 -3863.47

(xxx)

ORB(ibs) 2RB(ibs) ET(Ibs)

24546.79

25968.50

26581.64

26947.87

31010.86

25314.08

14983.85

10445.44

6899.03

2291.34

-3714.92

-3002.27

-5835

17996.44

18769.99

18810.24

22794.83

13959.38

4729.38

-5636.19

-11735.59

-16862.33

-16975.81

-13536.17

-6822.41

-144.85

45559.88

47518.21

47167.74

57247.29

50213.95

36037.72

14809.60

6179.54

-8553.11

-21305.15

-22506.38

-16746.60

-3660.27

Fig. A-5 Sample BASE4.OUT File
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_i;! _B 235.0618 ABORB 433.7361

_LRB 116.8987 AEORB L32.5359

AEFLRB 118.1631 AEFORB 301.2002

ACYLRB 183.8539 LIORB 17.50000

ARLRB 1.278525 L2ORB 17.50000

LILRB 12.20000 L3ORB 15.15544

1,2L,RB 12.20000 ANORB 7.4203491E-02

ANLRB 31.94133 XSDORB 1.333333

XSDLRB 0.0000000E+00

ABET 598.2849

AEFET 1502.145

AEET 350.6960

DEET 21.13102

ANET 299.1425

XSDET 1.975768

MACH

ALT (FT)

Q (PSF)

PRESS (PSF)

THRUST TOT (LB)

BgOSTER THRUST (LB)

;B THRUST (LB)

CfbOOSTER 28

CTORB 7.

C T _ r I I

I'Li_ME ANGLE (RB ORB

0.6000000

9065.000

383.8000

1535.280

6437333.

2607000.

1223333.

.89708

348761

.16578

) 6.0727 94 ¸ 3.171308

I/_CORRECTED (RB ORB ET) 0.95000

'I_>_ZLE EXT (RB ORB ET) 0.00000

!_0_ CYLINDER (RB ORB ET) 0.00000

FINS (RB ORB ET) 0.00000

r_)'rAL Pb/P$ (RB ORB ET) 0.95000

O0

OOE+O0

00E+O0

OOE+O0

00

0.9500000

0.O000000E+O0

O.O000000E+00

-3.5100002E-03

0.9464900

0.9500000

O.O000000E+O0

0.O000000E+00

O.0000000E+O0

0.9500000

CPB (RB ORB ET) -0.19841

CI)B (RB ORB ET) 8.71563

0_B (wo/NS) (RB ORB ET) 17996.

7_B (wo/NS) (TOTAL) 88103.

27

98E-03

44

II

-0.2123413

2.3775930E-02

24546.79

-0.1984127

4.4129126E-02

45559.88

NOZ SP Pb/Pi (RB ORB ET) 0.00000

NOZ SP Pb (RB ORB ET) 0.00000

N:)Z SP DRAG (RB ORB ET) 0.00000

OOE+O0

OOE+00

00E+00

0.0000000E+00

O.O000000E+O0

O.O000000E+O0

O.0000000E+00

O.0000000E+00

O.0000000E+O0

DFB (w/NS) (RB ORB ET) 17996.44

I)FB (w/NS) (TOTAL) 88103.11

24546.79 45559.88

MACH (n)

? F _ _n _.

A--IO
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MACH

0.6000000

0.7400000

0.8700000

1.010000

1.140000

1.290000

1.480000

1.710000

1.980000

2.260000

_.820000

,,.LJ3t)O0_?

ORIGINAL PAGEIS

OF POOR QUALITY'

LMSC-XEC TR F268592

MACH

0.6000000

0.7400000

0.8700000

1.010000

1.140000

1.290000

1.480000

1.710000

1.980000

2.260000

2.820000

3.440000

4.030000

ALTITUDE Q

(FT) (PSF)

9065.000 383.8000

13447.70 493.7000

17979.00 576.1500

23256.00 626.4400

28248.40 648.8400

33622.93 657.0667

39848.54 648.3400

46490.44 625.9360

53950.90 585.9850

61880.60 525.7401

83994.20 323.7240

111853.9 131.9580

138365.6 2.050000

Fig. A-7 Sample BASE4.TRAJ file

ALTITUDE ORBITER BOOSTER TOTAL

(FT) (LBS) (LBS) (LBS)

9065.000

13447.70

17979.00

23256.00

28248.40

33622.93

39848.54

46490.44

53950.90

61880.60

83994.20

i[1853.9

138365.6

1223333. 2607000. 6437333.

1091033. 2474000. 6039033.

1047400. 2369633. 5786666.

3656867. 956333.2 5569533.

1039534. 2283134. 5605801.

1187845. 2369200. 5926245.

1296000. 2461623. 6219245.

1372213. 2522293. 6416800.

1385234. 2554483. 6494200.

1395134. 2539000. 6473133.

1403560. 2211054. 5825667.

1408520. 1810740. 5030000.

1413240. 1429796. 4272833.

Fig. A-8 Sample BASE4.THRUST File
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MACH

0.6000000

0.7400000

0.8700000

1.010000

1.140000

1.290000

1.480000
1.710000

1.980000

2.260000

2.820000

3.440000

4.030000

LMSC-HEC TR F268592

ALTITUDE ORB ANGLE

(FT) (DEG)

RB ANGLE

(DEG)

9065.000 3.171308 6.072794

13447.70 4.704556 9.008839

17979.00 6.289790 12.04443

23256.00 13.135902 15.57958

28248.40 9.882447 18.92407

33622.93 11.76268 22.52456

39848.54 13.94065 26.69519

46490.44 16.26426 31.14472

53950.90 18.87423 36.14260

61880.60 21.64837 41.45484

83994.20 29.38461 56.26911

II1853.9 39.13108 74.93279

138365.6 48.40594 92.69341

Fig. A-9 Sample BASE4.PLUME File
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BASE4 PROGRAM LISTING

***************************************************************

C

C CALULATION OF BASE PRESSURE FgR SSLV w/LRB
C
C WRITTEN BY: Richmrd Rohouser
C

C AT: Lockheed Missiles and Space Co.
C 4B_N_ Brmdford Drive

C Huntsville, Alabamm 36807
C

C PH: (205)722-4238
C
***************************************************************

C

INTEGER INLRB,INORB,IWORB,ITORB,IEL,ILRB
REAL SREF,MACH,ALT,Q,PIjTHTOT,THLRBpTHORB,THET,

PP,PP1,PPI(21),ALTI(21),
DBLRB,DELRBpDCYLRB,XJLRB,DXJLRB,LRB,

KOLRB,KLRB,EELRB,DJLRB,PCLRB,XSDLRB,
ANLRB,LILRB,L2LRB,

DBORB,DEORB,XJORB,DXJORB,,XSORB,TCW,TCT,
KBORB,KORB,EEORB,DJORB,PCORB,XSDORB,
ANORB,L10RB,L20RB,L3ORB,
DBET,DEET,XSET,XSOET,ANET,KeET,KET,EEET,
DJET,PCET,
ABLRB,AELRB,AEFLRB,ACYLRB,AFLRB,PRLRB,PLRB1,

PLRB2,CTLRB,TAALRB,CPBLRB,CDBLRB,DFBLRB,
ABORB,AEORB,AEFORB,PBWORB,PBTORB,CTORB,TAAORB,
CPBORB,CDBORB,DFBORB,
ABET,AEFET,CTET,TAAET,CPBET,CDBET,DFBET,

PBLRB1,PBLRB2,PBLRB3,PBLRB4,PBLRBA,PBLRBB,PBLRBT,
PBORB1,PBORB2_PBORB3,PBORB4,PBORBA,PBORBS,PBORBT,
PBET1,PBET2,PBET3,PBET4pPBETA,PBETS,PBETT,
DFBLRB1,DFBORB1,DFBET1,DFTOT1,PBLRB4A_PBORB4A,PBET4A,
DFNLRB,DFNORB,DFNET

CHARaCTERs1 LINE
CHARACTER*20 FNAME1,FNAME2,FNAME3,FNAME4,FNAME6,FNAMEB

C

DATA SREF,PI /2690.,3.141892664/
C

DATA ALTI / e., 1_., 2GH_O., 30000., 48000.,
500_., 60aK_O., 7_., 8_0., 9_0.,

100000. , 110EH_0., 120_., 13_H_00. , 14_H_00. ,
1580_.,160_.,17_.,18_0.,19_0.,
2eeeee. /

C

DATA PPI/1.10325E+3,6.96946E+2,4.66_6E.2,3.01486E÷2,1.88230E+2,
1.16641E+2,7.23120E÷1,4.48767E÷l,2.80154E÷l,l.76096E÷l,
1.11428E÷1,7.10413 ,4.59717 ,3.02101 ,2.01393 ,
1.36070 ,9.29799E-1,6.3BBB7E-1,4.39927E-1,2.94703E-1,
1.97960E-1/

DATA INORB,IWORB,ITORB /3,2,1/
C

DATA PBLRB1,PBLRB2,PBLRB3 /0.0,0.0,0.0/

DATA PBLRB4,PBLRBS,PBLRBT /0.0,0.0,0.0/
C

DATA PBORB1,PBORB2,PBORB3 /0.0,0.9,0.0/
DATA PBORB4,PBORBS,PBORBT /0.0,0.0,0.0/

Fig. A-IO BASE4 PROGRAM LISTING
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DATA
DATA

DATA
DATA

DBORB,DEORB,AFORB /23.6,7.5,.333/
KeORB,EEORB,PCORB /._eoo963,77.5,42788e./
XJORB,XSORB /9.2,1_._/

TCW,TCT /._6,.e6/

DATA
DATA

DATA

PBET1,PBET2,PBET3 /O.O,e.9,B.Ol'
PBET4,PBET5,PBETT /B._,e.9,e.o/

DBET,XSET,AFET /27.8,41.76,.333/

DATA FNAME2 /'BASE4.TRACE'/
DATA FNAME3 /'BASE4.0UT'/
DATA FNAME4 /'BASE4.PLUME'/

DATA FNAME5 /'BASE4.TRAJ'/
DATA FNAME6 /'BASE4.THRUST'/

WRITE(6,,)

_RITE(5,1_N_Q)

READ(E,leWD1,ERR=5) FNAME!
_ITE(6,.)

OPEN(19,FILE=FNAME1,STATUS='OLD')
OPEN(2e,FILE=FNAME2,STATUS='NEW')
OPEN(21,FILE=FNAME3,STATUS='NEW')

OPEN(22pFILE=FNAME4,STATUS='NEW _)
DPEN(23,FILE=FNAMEE,STATUS='NEW')

OPEN(24,FILE=FNAME6,STATUS='NEW')

READ(19,1eI_1,ERR=998) LINE
READ(lg,1_l,ERR=998) LINE
READ(19,1_l,ERR=998) LINE
READ(19,1_l,ERR=998) LINE
READ(19,1_l,ERR=998) LINE
READ(19,1_l,ERR=998) LINE
READ(19,*,ERR=998) INLRB

READ(19,*,ERR=998) DBLRB
READ(19,*,ERR=998) DELRB
READ(19,*,ERR=998) DCYLRB
READ(lg,*,ERR=998) XJLRB
READ(19,*,ERR=998) XSLRB

READ(19,*,ERR=998) KBLRB
READ(19,*,ERR=998) EELRB
READ(19,*,ERR=998) PCLRB
READ(19,*,ERR=998) KeET

READ(19,*,ERR=998) EEET
READ(lg,*,ERR=998) PCET
READ(19,*,ERR=998) AFLRB
READ(19,1eel,ERR=998) LINE
READ(19,10el,ERR=998) LINE
READ(19,1_1,ERR=998) LINE

READ(19,1_N_1,ERR=998) LINE
READ(19,1_N_l,ERR=998) LINE

LRB CALCULATIONS

ABLRB = PI * (DBLRB/2.8)**2
AELRB = (PI * (DELRB/2.e)**2) * FI_OAT(INLRB)
AEFLRB = ABLRB - AELRB

ACYLRB = PI * (DCYLRB/2.9)**2
ARLRB = ABLRB/ACYLRB
LILRB = XSLRB * DELRB ! NOTE - L1 AND L2 ARE SET UP HERE FOR

L2LRB = XSLRB • DELR8 ! A 4 NOZZLE CONFIGURATION, THIS SHOULD

FiE. A-IO BASE4 PROGRAM LISTING (Continued)
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ANLRB = L1LRB * 12LRB - AELRB

XSDLRB = XSLRB/DELRB

ORB CALCULATIONS

ABORB = PI * (DBORB/2.e)**2
AEDRB = (PI * (DEORB/2.e)**2) * FLOAT(INORB)
AEFORB = ABORB - AEORB
LIORB = XSORB * DEORB
L2ORB = XSORB * DEORB
L3ORB = SQRT(LIORB**2 - (L20RB/2.6)**2)
ANORB = 6.5 * L2ORB * L_ORB - AEORB

XSDORB = XSORB/DEORB

ABET = PI * (DBET/2.0)**2
AEFET = ABET * ABORB + 2*(ABLRB)

AEET = 3.6 * AELRB
DEET = 2.6 * SQRT(AEET/PI)
ANET = 6.6 * ABET

XSDET = XSET/DEET

WRITE(2e,,)
_ITE(26,2EN_6) ABLRB,ABORB,ABET

WRITE(2_,2fW_7) AELRB,AEORB,AEET
WRITE(26,2e68) AEFLRB,AEFORB,AEFET
_RITE(2Q,20e9) ACYLRB,LIORB,DEET
WRITE(20,261e) ARLRB,E2ORB,ANET
WRITE(2e,2e11) LILRB,L3ORB,XSDET
_tRITE(2e,2612) L2LRB,ANORB

_ITE(2e,2613) ANLRB,XSDORB
WRITE(2e,2614) XSDLRB

_IRITE(2e,*)
WRITE(2e,*)'*******************************************'
_RITE(20,o) J.******************=******** ***************

_RITE(2e,.)
_ITE(21,20ee)
WRITE(21,2ee1)
WRITE(21,*)
WRITE(21,2ee2)
WRITE(21,,)
ttIRITE(21,2ee3)
WRITE(21,20e4)
WRITE(22,.)' MACH ALTITUDE ORB ANGLE '_

' RB ANGLE'

WRITE (22, *) ' (FT) (DEG) ',

' (DEG) '

WRITE (22, *)
WRITE(23,*)' MACH ALTITUDE Q'
WRITE (23, *) ' (FT) (PSF) '

_ITE(23,*)
_ITE(24,.) _ MACH ALTITUDE ORBITER ',

'BOOSTER TOTAL'

WRITE(24,*)' (FT) (LBS) ',
' (LBS) (LBS)'

WRITE(24,*)

BEGIN TRAJECTORY LOOP

READ(19,.,ERR=998,END=999,IOSTAT=:IER) MACH,ALT,Q,THTOT,THLRB

! BE CHANGED FOR A 2, 3, OR S SETUP

Fig. A-IO BASE4 PROGRAM LISTING (Continued)
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THORB = THTO1 - 2.O*THtRB
THET = THTOT

CTLRB = THLRB/(q.ABLRB)
CTORB = THORB/(q¢ABORB)
CTET = THET/(Q, AEFET)

TAALRB = THLRB/ABLRB

TAAORB = THORB/ABORB
TAAET = THET/AEFET

UNCORRECTED BASE PRESSURE RATIO - (ALL M; ALL ELEMENTS)

IF(BACH.LT.1.8) THEN
CALL EXTCT(MACH,CTLRB,PBLRB1A)
CALL EXTCT(MACH,CTORB,PBORB1A)
CALL EXTCT(MACH,CTET_PBETIA)
PBLRB1 = PBLRB1A
PBORB1 = PBORB1A
PBET1 = PBET1A

ENDIF

IF(MACH.GE.I.B.AND.MACH.LE.2.2) THEN
CALL EXTCT(BACH,CTLRB,PBLRBIA)
CALL EXTCT(BACH,CTORB,PBORB1A)
CALL EXTCT(MACH,CTET,PBET]A)
CALL EXTCA(ALT,TAALRB,PBLRBIB)
CALL EXTCA(ALT,TAAORB,PBORB1B)

CALL EXTCA(ALT,TAAET,PBET1B)
PBLRB1 = (PBLRB1A + PBLRB1B)/2.B

PBORB1 = (PBORBtA + PBORBIB)/2.B
PBET1 = (PBET1A • PBETIB )/2.0

ENDIF

IF (BACH.GT.2.2) THEN
CALL EXTCA(ALT,TAALRB,PBLRB1B)

CALL EXTCA(ALT,TAAORB,PBORB1B)
CALL EXTCA(ALT,TAAET,PBET1B)
PBLRB1 = PBLRBIB
PBORB1 = PBORB1B
PBET1 = PBETIB

ENOIF

CORRECTION FOR NOZZLE EXTENSION - CALL M; LRB,ORB)

DXJLRB = ABS(XJLRB/DBLRB - 0..34)

CALL EXTDXJ(MACH,DXJLRB,PBLRB2)
IF(XJLRB/DBLRB.LT.O.34) PBLRB2 = -PBLRB2
DXJORB = ABS(XJORB/DBORB - 0.34)
CALL EXTDXJ(BACH,DXJORB,PBORB2)

IF(XJORB/DBORB.LT.O.34) PBORB2 = -PBORB2

CORRECTION FOR NON-CYLINDRICAL - (1.60 .GE. M .LE. 3.5; LRB)

IF(MACH.LT.1.0) THEN
PLRBt = 0.0

PLRB2 = 0.0

PBLRB3 = 0.0
ENOIF
IF(MACH.GE.1.O.AND.MACH.LT.1.6) THEN

CALL EXTCYL(ARLRB,BACH,PRLRB)
PLRB1 = PBLRB1 + PBLRB2 + PBLRB3

F£_. A-10 B_SE4 PROGRAM LISTING (Continued)
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PLRB2 = PLRB1/PRLRB
PBLRB3 : PLRB2 - PLRB1

PBLRB3 = PBLRB3 * ((2.9 * UACH) - 2._)
ENDIF

IF(MACH.GE.1.5.AND.MACH.LT.3.6) THEN

CALL EXTCYL(ARLRB,MACH,PRLRB)
PLRB1 = PBLRB1 * PBLRB2 + PBLRB3

PLRB2 = PLRB1/PRLRB
PBLRB3 = PLRB2 - PLRB1

ENOIF

IF(MACH.GE.3.5.AND.MACH.LT.4.Q) THEN

CALL EXTCYL(ARLRB,MACH,PRLRB)
PLRB1 = PBLRB1 ÷ PBLRB2 * PBLRB3

PLRB2 = PLRB1/PRLRB
PBLRB3 = PLRB2 - PLRB1

PBLRB3 = PBLRB3 * ((-2.m • MACH) + 8.9)
ENDIF

XF(MACH.GE.4.0) THEN
PLRB1 = Q.Q

PLRB2 = e.8
PBLRB3 = e.e

ENDXF

CORRECTIONS FOR FINS - (ALL ¼; ORB)

CALL EXTFIN(MACH,PBWORB)
CALL EXTFIN(MACH,PBTOR'B)

PBWORB = PBWORB . (TCW/e.1) • (IWORB/4.0)
PBTORB = PBTORB • (TCT/e.1) • (ITORB/4.Q)
PBORB6 = PBWORB • PBTORB

TOTAL ALL Pb/P|

PBLRBT = PBLRB1 • PBLRB2 ÷ PBLRB3 * PBLRB5
PBORBT = PBORB1 . PBORB2 . PBORB3 ÷ PBORB5
PBETT = PBET1 + PBET2 ÷ PBET3 • PBET6

BASE PRESSURE COEFF

CPBLRB = (PBLRBT - 1.9)/(9.7 • MACH•.2)
CPBORB = (PBORBT - 1.e)/(g_.7 , MACH**2)
CPBET = (PBETT - 1.e)/(l_.7 • MACHe,2)

BASE DRAG COEFF

CDBLRB = -(CPBLRB • AEFLRB/SREF)
COBORB = -(CPBORB • AEFORB/SREF)
CDBET = -(CPBET * ABET/SREF)

CORRECTION FOR NOZZLE SPACING - (ALL M; LRB,ORB,ET)

DJLRB = KOLRB • (ALT/I_eB.) . (PCLRB)**e.8 * (EELRB),.(-e.6)
DJORB = KeORB • (ALT/I_.) • (PCORB)**e.8 • (EEORB)**(-e.5)

OJET = KeET • (ALT/leee.) • (PCET)**e.8 * (EEET)**(-e.s)

WRITE(22,.) MACH,ALT,DJORB,DJLRB
WRITE(23,.) MACH,ALT,Q
WRITE(24,,) MACH,ALT,THORB,THLRB,THTOT

IF(XSOLRB.GT.O.e) THEN
CALL EXTXSI(OJLRB,XSDLRB,PBLRB4)

FiE. A-10 B&SE4 PROGRAM LISTING (Cont£nued)
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E_E)IF

IF(XSDORB.GT.O.0) THEN
CALL EXTXS2(DJORB,XSDORB,PBORB4)

ENDIF

IF(XSDET.GT.O.0) THEN
CALL EXTXS2 (D JET, XSDET, PBET4)

ENDIF

NOZZLE SPACING EFFECT DRAG

CALL ATP(ALT,ALTI,PPI,21,PP)
PP1 = PP * 2.089

PBLRB4A = PBLRB4 * PP1
PBORB4A = PBORB4 * PP1
PBET4A = PBET4 * PP1

DFNLRB = -PBLRB4A * AFLRB * ANLRB
DFNORB = -PBORB4A *AFORB * ANORB
DFNET = -PBET4A * AFET * ANET

BASE DRAG

DFBLRB1 = 2.0 * CDBLRB*Q*SREF
DFBORB1 = CDBORB*Q*SREF
DFBET1 = CDBETeQ*SREF
DFBTOT1 = DFBLRB1 * DFBORB1 * DFBET1

DFBLRB = DFBLRB1 ÷ 2.0 *DFNLRB

DFBORB = DFBORB1 + DFNORB
DFBET = DFBET1 ÷ DFNET
DFBTOT = DFBLRB * DFBORB ÷ DFBET

WRITE (20, *)
WRITE(20,*)' MACH
WRITE(20,*) ' ALT (FT)
WRITE(20,,)' Q (PSF)

WRITE(20,.) ' PRESS (PSF)
• RITE(20,,) ' THRUST TOT (LB)

WRITE(20,.)' BOOSTER THRUST (LB)
_h_ITE(20,.) ' ORB THRUST (LB)
IF(MACH.LT.2.0) THEN

WRITE (20p *) ' CTBOOSTER
WRITE (20, .) _ CTORB
WRITE(20,*)' CTET

ENOIF

IF(MACH.GE.2.0) THEN
WRITE(20,*) ' T/A BOOSTER
WRITE(20,*)' T/A ORB
WRITE(20,.)' T/A ET

ENDIF

WRITE(20,.)' PLUME ANGLE
WRITE(2*,*)
WRITE(20,*) ' UNCORRECTED
WRITE(20,.)' NOZZLE EXT
WRITE(20,,)' NON CYLINDER
WRITE(20,*)' FINS
WRITE(20,*)' TOTAL Pb/Pi
WRITE (2e,*)

,MACH

,ALT
,Q
,PP1
,THTOT
,THLRB
,THORB

' CTLRB

' CTORB
p

',CTET

',TAALRB

',TAAORB
',TAAET

(RB ORB) ',DJLRB,DJORB

(RB ORB ET) ',PBLRB1,PBORB1,PBET1
(RB ORB ET) ',PBLRB2,PBORB2,PBET2

(RB ORB ET) ',PBLRB3,PBORB3,PBET3
(RB ORB ET) ',PBLRBS,PBORBS,PBET5
(RB ORB ET) ',PBLRBT,PBORBT,PBETT

Fig. A-IO BASE4 PROGRAM LISTING
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WRITE(2e,*)' CPB
WRITE(2e,*)' CDB
WRITE(2_,*)' DFB (*o/NS)
WRITE(2e,,)' DFB (wo/NS)

WRITE(2e,*)
WRITE(20,*)' NOZ SP Pb/Pi
WRITE(20,*)' NOZ SP Pb
WRITE(2_,=)' NOZ SP DRAG
WRITE(28,*)

WRITE(28,*)' DFB (w/NS)
WRITE(28,,)' DFB (w/NS)
WRITE(2e,,)

(RB ORB ET) ',CPBLRB,CPBORB,CPBET
(RB ORB ET) ',CDBLRB,CDBORB,CDBET
(RB ORB ET) ',DFBLRB1,DFBORB1,DFBET1
(TOTAL) ',DFBTOT1

(RB ORB ET)
(RB ORB ET)
(RB ORB ET)

',PBLRB4,PBORB4,PBET4
',PBLRB4A,PBORB4A,PBET4A

',DFNLRB,DFNORB,DFNET

(RB ORB ET) ',DFBLRB,DFBORB,DFBET
(TOTAL) ',DFBTOT

WRITE(20,.)'.e**¢e**oee.*******.s***********************'
WRITE (28, *)
WRITE(21,2885) MACH,ALT,q,DFBTOT,DFBORB,DFBLRB,DFBET
GO TO 18e

1lime
lOOl
le82

2ooe

2OOl

2u2

21)o3

2tND4

2_6

2808 FORMAT (T2
T53

2e187 FORMAT (T2
TS3

21_8 FORMAT (T2
T53

2009 FORMAT (T2
T53

2818 FORMAT (T2
T53

2811 FORMAT (T2
T83

2812 FORMAT (T2
2813 FORMAT (T2

2814 FORMAT (T2
C

998 WRITE(6,*)
WRITE (6, *)

999 END
C

FORMAT(' ENTER INPUT FILE NAME --> ',|)
FORMAT (A)
FORMAT(' ENTER BOOSTER TYPE ',/,

' 1-SRB 2-MLRB1 3-MLRB2 4-GDLRB3 6-GDLRB4 --> ',$)
FORMAT (2 (/))
FORMAT(26X,8('X'),lX,8('X'),2X,'(XXX)')
FORMAT(30X,'TOTAL BASE DRAG')

FORMAT(SX,'MACH ALT(FT) Q(psf) LV(Ib=) ',
' ORB(Ibs) 2RB(Ib=) ET(Ibs)')

FORMAT(3X,74('-'))
FORMAT(SX,F4.2,2X,F18.2,2X,F6.1,2X,F18.2,2X,F18.2,2X,

F1e.2,2X,Fle.2)
'ABLRB ',T13,Fll.SpT28,'ABORB ',T38,F11.6,
'ABET ',T63,F11.5)

'AELRB ',T13,Fll.S,T28,'AEORB ',T38,Fll.5,
'AEET ',T63,F11.8)
'AEFLRB',T13,Fll.5,T2B,_AEFORB',T38,Fll.6,
'AEFET ',T63,Fll.E)
'ACYLRB',T13,F11.E,T28,'L10RB ',T38,F11.S,
'DEET
'ARLRB

'ANET
'LILRB
'XSDET
'L2LRB
'ANLRB
'XSDLRB

,T63,Fll.5)
,T13,F11.6,T28,'L20RB ',T38,F11.S,

,T63,F11.E)
,Tt3,Fll.S,T2B,'L30RB ',T38,Fll.S,
,T63,Fll.8)
,T13,F11.E,T28,'ANORB ',T38,Fll.6)
,T13,Ftl.5,T2B,'XSDORB',T38,Fll.5)

,T13,F11.8)

ALT,MACH,q,THTOT,THLRB
' READ ERROR ',IER

C****************e*************************e***********************

C
SUBROUTINE EXTCT(MACH,CTHRUST,PBBT)

C
C EXTRAPOLATE Pb/Pi vs M and CT PB(M,CT)
C

REAL M(9),CT(7),PB(9,7),MACH,CTHRUST,PERM,PERCT,
PBB1,PBB2,PBB3,PBB4,PBBS,PBB6,PBB7

C

DATA M /8._,_.68,0.98,1._,1.18,1.25,1.50,1.75,2._/
DATA CT / e._, 6._,1_.8,16.8,2e.o,26._,3e.o/

Fig. A-IO BASE4 PROGRAM LISTING (Continued)

Ao-19

LOCKHEED-HUNTSVILLE ENGINEERING CENTER



LMSC-HECTR F268592

DATA PB /o.gse_,_.95Be,e.925B,B.88e_,_.86ee,_.80ee,8.748e,
_.69_e,B.469e,
_.gse_,B.9s_e,e.925o,o.898e,o.88ee,_.875e,8.918B,
e.B9eO,e.87_e,
B.95eB,B.950e,B.92sE_,B.9aH_B,B.89EB,e.9250,1.B4_B,
1.1eee,1.16ee,

e.9s_,B.96_H_,B.925o,B.916o,e.g1_,o.95ee,l.E78e,
1.19ee,1.31ee,
e.95Be,e.9Eee,e.925tD,e.925o,e.92ee,e.97eo,1.lBee,
1.24BO,1.38(NJ,

8.98ee,e.9510,e.928e,_.94ee,e.94e_,e.986e,1.13Be,
1.29ee,1.48_,
e.gsee,e.gEIND,B.926|},B.98ee,e.gsee,e.988e;1.16ee,
1.32ee,1.49Qe/

C
20

C
30

DO I=2,9
IF (U (I) .GT.MACH) THEN

I¼= I
GO TO 2e

ENOIF

IF(I.EQ.9) IU = 9

ENODO

DO J=2,7
IF(CT(J).GT.CTHRUST) THEN

ICT = J
GO TO 3e

ENDIF

IF(J.Eq.7) ICT = J
ENODO

PERU = (M(IM)-MACH)/(M(IM)-M(IM-1))
PERCT = (CT (ICT) -CTHRUST) / (CT (ICT) -CT (ICT-1))
PBB1 = PB(IM-I,ICT-1)
PBB2 = PB(IM,ICT-1)
PBB3 = PB(IM-I,ICT)

PBB4 = PB(IM,ICT)
PBBB = PBB2 - (PBB2 - PBB1).PERM
PBB6 = PBB4 - (PBB4 - PBB3)*PERM
PBB7 = PBB6 - (PBB6 - PBBB).PERCT

RETURN
END

C
Ce e_e ¢leeileo_ll _lll_e _ _, _/lllile_ ell_,l e**e _s e_e_eee_ _ ee_ee_es*_eeo • e B • • e_ee e_
C

SUBROUTTNE EXTCA (ALT, TAAA, PB87)
C

C EXTRAPOLATE Pb/Pi v$ C/A and ALT PB(TAA,H)
C

REAL TAA(6),H(14),PB(6,14),ALT,TAAA,PERTAA,PERH,
PBB1, PBB2, PBB3, PBB4, PBB5, PBBE, PBB7

C
DATA TAA /3BI_., 36£10,4BBe., 8_t_. ,6B9_., 10_9_. /
DATA H / _._, 1_._, 20_._, 3_._, 4_._, 6_e.e,

6_eee. _, 7coBB. e _ 8eeee. •, 9eeee. e, leSSee, e, 1 leeee. •,

12eeee. e, 13e)080. e�

C

DATA PB /e.5_),g.SS,g.et_,9.73,_.78,_.88,
e.58,e.65,e.7o,f).8e,e.99,e.98,
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.9.79,8.78,9.90,1.90,1.98,

9.78,9.85,1.99,1.10,1.29,
9.85,9.93,1.11,1.23,1.30,

9.93,1.99,1.29,1.33,1.4g,
9.98,1.13,1.33,1.46,1.59,
1.13,1.39,1.55,1.66,1.73,
1.28,1.59,1.80,1.90,1.95,
1.43,1.79,2.93,2.25,2.29,

1.69,1.93,2.30,2.45,2.48,
1.89,2.18,2.80,2.75,2.85,

1.68,2._,2.46,2.95,3.20,3.36,

1.68,2.30,2.86,3.46,3.85,4.10/
C

DO I=2,6
IF (TAA (I). GT. TAAA) THEN
ICA = I

GO TO 29
ENDIF

IF(I.EQ.6) ICA : I
ENODO

C

29 DO J=2,14
IF (H(J) .GT.ALT) THEN

IH= J
GO TO 39

ENDIF

IF(J.EQ.14) IH = J
ENDDO

C
39 PERTAA = (TAA (ICA) -TAAA) / (TAA (ICA) -TAA (ICA-1))

PERH = (H (IH) -ALT) / (H (IH) --H (IH-1))

PBB1 = PB(ICA-I,IH-1)
PBE2 = PB(ICA,IH-1)
PBB3 = PB(ICA-I,IH)
PBB4 = PB(ICA,IH)
PBB6 = PBB2 - (PBB2 - PBB1).PERTAA
PBB6 = PBB4 - (PBB4 - PBB3)*PERTAA

PBB7 = PBB8 - (PBB8 - PBBB)*PERH
C

RETURN
END

C
C ill lill Ill i Ill ill Ill Iill ill II II ill Ill Ill II ill Ill Ill 'l Iil i i i • i • • i i i _ _ _ i i i i i i _ i _ i _ i _ _ * lli@lliO_llllililllll

C
SUBROUTINE E×I"D× J (MAO-I , DEL×J , DPBB?)

C
C EXTRAPOLATE DPb/P| v$ MInd DXJ DPB(M,DXJ)
C

REAL M(18) ,DXJ(11) ,DPB(18,11) ,MACHiDELXJ,PERM,PERXJ,
DPBB1, DPBB2, DPBB3, DPBB4, DPBB5, DPBB6, DPBB7

C

DATA M /9.9,9.4,9.8,1.2,1.8,2.9,2.4,2.8,3.2,3.6,4.9,4.4,
4.8,5.2,6.6,6.9,8.4,8.8/

DATA DXJ / 0._,F).1,0.2,0.3,0.4,9.5,0.8,9.7,0.8,_.9,1.0/
C

DATA DPB /9.999,9.000,9.099,e.999,9.999,9.909,9.909,
9.999, _.090, _. _99,9.909,9.999, e. 909.9.099,
9.999,9._9,9.0_,9.999,
9.999,9.909,9.099,9.997,9.924,9.932,9.928,
9.929,_.012,9.997,9.993,9.999,9.999,9.999,
9. 999,9. _9,9. 999,9. 990,
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_._i_,_._,_._N_,_._t_,
_.BIB,8.B12,0.B14,B._32,_.88B,_.e94,e.B86,
_.B72,B.eSB,e.B4B,8.G3g,_.818jB.i_6,e.Bt_,
8.1)i_8,e.f_e,8.0t_B,8._,
B.828,e.B22,8.824,B.B53,e.116,8.132,B.12B,

e.1_,_.O88,8._63,8.846,_.828,8.812,B.883,
e.eee,e.eme,e.eme,e.eme,
e.B29,B.B31,8.838,B.B77,e.166,B.168,B.16B,
8.128,8.184,8.@83,B.e62,e.e4e,e.822,8._8,
B.Bi_,B._iM,B.@IM,B.Oi_,

e.O39,e.O40,O.S52,B.103+O.188,0.204,B.184,

8.184,8.183,B.128,B._96,_._68_B._44,8.824,
8.i_9,B.i_Rl,e.Oi_,S.i_Rl,
B.B86,B.B6B,B.BBB,8.153,B.264_B.276,B.244,
8.212,8.179,8.147,B.114,B.884,8.BS6,_.B32,

e.i_65,B._7B,B.1B2,B.184,_.3BB,B.316,_.276,
g.248,_.283,8.161,B.138,B.898,B.t_66,_.841,

B.e77,B._81,E.13B,_.223,_.336,B.348,8.3B8,
B.268,_.229,8.187,_.146,_.118_8.876,8._49,

e.e3e,e.e13:,e.e_wJ,#.eeg/

DO I=2,18
IF (M(I) .GT. MACH) THEN

IM=I

GO TO 2_
ENDIF

IF(I.E,.IS) IM = 18
ENODO

DO J=2,11

IF(DXJ(J) .GT.DELXJ) THEN
TXJ = J
GO TO 3_

ENOIF

ZF(J.Eq.11) IXJ = J
ENI)00

PERM = (M(IM)-MACH)/(M(IM)-M(IM-1))
PERXJ = (OX J (IX J) -DELXJ) / (OXJ (IX J) -DXJ (IX J-l) )

DPBB1 = DPB(IM-I,IXJ-1)
DPBB2 = DPB(IM, IXJ-1)

DPBB3 = DPB(IM-I,IXJ)
DPBB4 = DPB(IM,IXJ)
DPBB6 = DPBB2 - (DPBB2 - DPBBI)*PERM
DPBB6 = DPBB4 - (DPBB4 - DPBB3)*PERM
DPBB7 = DPBB6 - (DPBB6 - DPBBIS)*PERXJ

RETURN

END
C

C

SUBROUTINE EXTCYL(AR,MACH,PR)
C

Fig. A-IO BASE4 PROGRAM LISTING (Continued)
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C EXTRAPOLATE Pressure Ratio of NON-CYL vs
C Msch and Base Area Ratio PR = f(M,AR)
C

REAL M(7),S(7),AR,MACH,PR
C

DATA M /_.eo,l.59,1.76,2.08,2.50,3.6B,3B.ee/
DATA S /.gt_,.t_t_p.969,.149,.196,.989j.g89/

C
DO I=2j7

IF (M (I). GT. MACH) THEN
IM=I

GO TO 2e
ENDIF

IF(I.EQ.7) IM = 7
ENDDO

C

29 PERM = (M(IM)-MACH)/(M(IM)-.M(IM-1))
SLOPE = S(IM) - (S(IM) - S(]:M-1)).PERM
PR = SLOPE • (AR - 1.9) ÷ 1.9

C
RETURN
F_NO

C
************************************************************************

C

SUBROUTINE EXTXSI(DJ,XSDD,PBB7)
C

C EXTRAPOLATE Pb/Pi vs DJ and XSD PB(PL,XSD)
C
C ********* FOUR NOZZLE CONFIGURATION *.8*=****
C

REAL PL(19),XSD(4),PB(19j4),DJ,XSDDpPERPL,PERXSD,
PBB1,PBB2,PBB3,PBB4,PBB6,PBB6,PBB7

C
DATA PL /9.9,19._,20.9,39.1D,49.9,$_.9,69.9,79.9,89.9,99.9/

DATA XSD/1.09,1.22,1.38,1.48/
¢

DATA PB / 9.9, 9.3, 2.8, 7.9,12.0,17.0,22.9,27.9,32.9,37.0,
9.9, 9.9, 9.9, 1.9, 4.8, 9.8,14.6,19.6,24.6,29.8,
9.9, 9.9, 9.9, 9.9, 1.0, 6.e,19.3,15.3,28.3_26.3,
9.9, 9.9, 9.8, 9.9, 9.2, 1.8, 5.5,19.5,16.5,29.8/

C
DO I=2,18

IF (PL (I) .GT.DJ) THEN
IPL = I

GO TO 29
ENDIF

IF(I.Eq.19) IPL = lO
ENODO

C

29 DO J=2,4
IF(XSD(J).GT.XSDD) THEN

IXSD = J
GO TO 39

ENDIF

IF(J.EQ.4) IXSD = J
ENDDO

C

38 PERPL = (PL(IPL)-DJ)/(PL(IPL)-PL(IPL-1))
PERXSD = (XSD(IXSD)-XSDD)/(XSD(IXSD)-XSD(IXSD-1))
PBB1 = PB(IPL-I,IXSD-1)

I

I

I

FiE. A-IO BASE4 PROGRAM LISTING (Continued)
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PBB2 = PB(IPL,IXSD-1)
PBB3 = PB(IPL-I,IXSD)

PBB4 = PB(IPL,IXSD)
PBB6 = PBB2 - {PBB2 - PBB1),PERPL

PBB8 = PBB4 - (PBB4 - PBB3).PERPL
PBB7 = PBB6 - (PBB6 - PBBS)*PERXSD
IF(PBB7.LT.g.O) PBB7 = 9.9
IF(PBB7.GT.8.0) PBB7 = 8.0

C
RETURN
ENO

C

C

SUBROUTINE EXTXS2 (DJ, XSDD, PBBT)
C

C EXTRAPOLATE Pb/Pi vs DJ ==nd XSD PB(PL,XSD)
C
C ********* THREE NOZZLE CONFIGURATION ***,=*****
C

REAL PL (10) , XSD (3) =,PB (1(_ , 3) , DJ , XSDD, PERPL , PERXSD ,
PBB1, PBB2, PBB3, PBB4, PBBS, PBB6, PBB7

C
DATA PL /0.0,19.0,29.8,30.9,4QI.O,68.e,OB.8,7F#.O,89.0,99.8/

DATA XSD/1.99,1.22,3 .t_/
C

DATA PB / 0.8, e.8, 9.9, 0.0, 8.3, 1.1, 3.S, 8.8,13.5,18.6,
0.0, 9.9, 9.9, 0.9, 9.1, 9.6, 1.8, 6.9,11.0,16.9,
0.9, e.O, 8.e, 0.8, 0.8, 8.1, e.4, 3.8, 7.8,12.8/

DO I=2,19
IF(PL(I).GT.DJ) THEN
IPL = I

GO TO 20
ENOIF

ZF(I.EQ.lg) IPL = lg
ENDDO

¢

29 DO J=2,3
IF(XSD(J).GT.XSDD) THEN

IXSD = J

GO TO 39
ENOIF

IF(J.EQ.3) IXSD = J
ENODO

C

39 PERPL = (PL(IPL)-DJ)/(PL(IPL)-PL(IPL-1))
PERXSD = (XSD(IXSD)-XSDD)/(XSD(IXSD)-XSD(IXSD-1))
PBB1 = PB(IPL-I,IXSD-1)

PBB2 = PB(IPL,IXSD-1)
PBB3 = PB(IPL-I,IXSD)

PBB4 = PB(IPL,IXSD)
PBB6 = PBB2 - (PBB2 - PBB1)*PERPL
PBB6 = PBB4 - (PBB4 - PBB3)*PERPL
PBB7 = PBB8 - (PBB6 - PBBS)*PERXSD
IF(PBBT.LT.O.g) PBB7 = 0.9
IF(PBB7.GT.8.8) PBB7 = 8.0

C
RETURN
END
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c

SUBROUTINE EXTFIN (MACH, PBBS)
C

C EXTRAPOLATE Pb/Pi for Fins vs M PB(M)
C

REAL M (9) , PB (9) , MACH, PBB1 , PBB2 , PBB3
C

DATA M / 0.00,0.50,0.76,1.00,1.25,1.60,2.00,3.00,30.00/

DATA PB / 0.eee,-o._N_6,-e.e12,--o.030,-e.o44,-o.e49,
-0. 050, -0. 048, -0. B48/

C
DO I=2,9

IF (M (I) .OT. MACH) THEN
IM=I

GO TO 20
ENOIF

IF(I.EQ.9) IM = 9
ENDDO

C

28 PERM = (M(IM)-MACH)/(M(IM)-M(IM-1))
PBB1 = PB(IM-1)
PBB2 = PB(IM)
PBB3 = PBB2 - (PBB2 - PBB1),PERM

C
RETURN
END

C

¢

SUBROUTINE ATP (ALT, ALTI, PP I, N, PP)
DIMENSION ALTI (21) ,ppT (21)

C

DO 10 I=2,N
IF(ALT.LE.ALTI(I)) GO TO 20

10 CONTINUE
I=N

C

2e PCT= (ALT-ALTI (I-1)) / (ALTI (I) -ALTI (I- 1) )
PP=PPI (I-1) +PCT. (PPI (I) -PPI (I-I))
RETURN
END

Fig. A-IO BASE_ PROGRAM LISTING (Concluded)
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